Abstract:The advancements in zero-shot text-to-speech (TTS) methods, based on large-scale models, have demonstrated high fidelity in reproducing speaker characteristics. However, these models are too large for practical daily use. We propose a lightweight zero-shot TTS method using a mixture of adapters (MoA). Our proposed method incorporates MoA modules into the decoder and the variance adapter of a non-autoregressive TTS model. These modules enhance the ability to adapt a wide variety of speakers in a zero-shot manner by selecting appropriate adapters associated with speaker characteristics on the basis of speaker embeddings. Our method achieves high-quality speech synthesis with minimal additional parameters. Through objective and subjective evaluations, we confirmed that our method achieves better performance than the baseline with less than 40\% of parameters at 1.9 times faster inference speed. Audio samples are available on our demo page (https://ntt-hilab-gensp.github.io/is2024lightweightTTS/).
Abstract:This paper proposes a speech rhythm-based method for speaker embeddings to model phoneme duration using a few utterances by the target speaker. Speech rhythm is one of the essential factors among speaker characteristics, along with acoustic features such as F0, for reproducing individual utterances in speech synthesis. A novel feature of the proposed method is the rhythm-based embeddings extracted from phonemes and their durations, which are known to be related to speaking rhythm. They are extracted with a speaker identification model similar to the conventional spectral feature-based one. We conducted three experiments, speaker embeddings generation, speech synthesis with generated embeddings, and embedding space analysis, to evaluate the performance. The proposed method demonstrated a moderate speaker identification performance (15.2% EER), even with only phonemes and their duration information. The objective and subjective evaluation results demonstrated that the proposed method can synthesize speech with speech rhythm closer to the target speaker than the conventional method. We also visualized the embeddings to evaluate the relationship between the distance of the embeddings and the perceptual similarity. The visualization of the embedding space and the relation analysis between the closeness indicated that the distribution of embeddings reflects the subjective and objective similarity.
Abstract:The zero-shot text-to-speech (TTS) method, based on speaker embeddings extracted from reference speech using self-supervised learning (SSL) speech representations, can reproduce speaker characteristics very accurately. However, this approach suffers from degradation in speech synthesis quality when the reference speech contains noise. In this paper, we propose a noise-robust zero-shot TTS method. We incorporated adapters into the SSL model, which we fine-tuned with the TTS model using noisy reference speech. In addition, to further improve performance, we adopted a speech enhancement (SE) front-end. With these improvements, our proposed SSL-based zero-shot TTS achieved high-quality speech synthesis with noisy reference speech. Through the objective and subjective evaluations, we confirmed that the proposed method is highly robust to noise in reference speech, and effectively works in combination with SE.
Abstract:This paper proposes a zero-shot text-to-speech (TTS) conditioned by a self-supervised speech-representation model acquired through self-supervised learning (SSL). Conventional methods with embedding vectors from x-vector or global style tokens still have a gap in reproducing the speaker characteristics of unseen speakers. A novel point of the proposed method is the direct use of the SSL model to obtain embedding vectors from speech representations trained with a large amount of data. We also introduce the separate conditioning of acoustic features and a phoneme duration predictor to obtain the disentangled embeddings between rhythm-based speaker characteristics and acoustic-feature-based ones. The disentangled embeddings will enable us to achieve better reproduction performance for unseen speakers and rhythm transfer conditioned by different speeches. Objective and subjective evaluations showed that the proposed method can synthesize speech with improved similarity and achieve speech-rhythm transfer.