Abstract:The zero-shot text-to-speech (TTS) method, based on speaker embeddings extracted from reference speech using self-supervised learning (SSL) speech representations, can reproduce speaker characteristics very accurately. However, this approach suffers from degradation in speech synthesis quality when the reference speech contains noise. In this paper, we propose a noise-robust zero-shot TTS method. We incorporated adapters into the SSL model, which we fine-tuned with the TTS model using noisy reference speech. In addition, to further improve performance, we adopted a speech enhancement (SE) front-end. With these improvements, our proposed SSL-based zero-shot TTS achieved high-quality speech synthesis with noisy reference speech. Through the objective and subjective evaluations, we confirmed that the proposed method is highly robust to noise in reference speech, and effectively works in combination with SE.
Abstract:This paper proposes a zero-shot text-to-speech (TTS) conditioned by a self-supervised speech-representation model acquired through self-supervised learning (SSL). Conventional methods with embedding vectors from x-vector or global style tokens still have a gap in reproducing the speaker characteristics of unseen speakers. A novel point of the proposed method is the direct use of the SSL model to obtain embedding vectors from speech representations trained with a large amount of data. We also introduce the separate conditioning of acoustic features and a phoneme duration predictor to obtain the disentangled embeddings between rhythm-based speaker characteristics and acoustic-feature-based ones. The disentangled embeddings will enable us to achieve better reproduction performance for unseen speakers and rhythm transfer conditioned by different speeches. Objective and subjective evaluations showed that the proposed method can synthesize speech with improved similarity and achieve speech-rhythm transfer.
Abstract:This paper proposes weight regularization for a faster neural vocoder. Pruning time-consuming DNN modules is a promising way to realize a real-time vocoder on a CPU (e.g. WaveRNN, LPCNet). Regularization that encourages sparsity is also effective in avoiding the quality degradation created by pruning. However, the orders of weight matrices must be contiguous in SIMD size for fast vocoding. To ensure this order, we propose explicit SIMD size aware regularization. Our proposed method reshapes a weight matrix into a tensor so that the weights are aligned by group size in advance, and then computes the group Lasso-like regularization loss. Experiments on 70% sparse subband WaveRNN show that pruning in conventional Lasso and column-wise group Lasso degrades the synthetic speech's naturalness. The vocoder with proposed regularization 1) achieves comparable naturalness to that without pruning and 2) performs meaningfully faster than other conventional vocoders using regularization.