Abstract:This paper proposes an automatic image correction method for portrait photographs, which promotes consistency of facial skin color by suppressing skin color changes due to background colors. In portrait photographs, skin color is often distorted due to the lighting environment (e.g., light reflected from a colored background wall and over-exposure by a camera strobe), and if the photo is artificially combined with another background color, this color change is emphasized, resulting in an unnatural synthesized result. In our framework, after roughly extracting the face region and rectifying the skin color distribution in a color space, we perform color and brightness correction around the face in the original image to achieve a proper color balance of the facial image, which is not affected by luminance and background colors. Unlike conventional algorithms for color correction, our final result is attained by a color correction process with a guide image. In particular, our guided image filtering for the color correction does not require a perfectly-aligned guide image required in the original guide image filtering method proposed by He et al. Experimental results show that our method generates more natural results than conventional methods on not only headshot photographs but also natural scene photographs. We also show automatic yearbook style photo generation as an another application.
Abstract:We propose an approximation method for thresholding of singular values using Chebyshev polynomial approximation (CPA). Many signal processing problems require iterative application of singular value decomposition (SVD) for minimizing the rank of a given data matrix with other cost functions and/or constraints, which is called matrix rank minimization. In matrix rank minimization, singular values of a matrix are shrunk by hard-thresholding, soft-thresholding, or weighted soft-thresholding. However, the computational cost of SVD is generally too expensive to handle high dimensional signals such as images; hence, in this case, matrix rank minimization requires enormous computation time. In this paper, we leverage CPA to (approximately) manipulate singular values without computing singular values and vectors. The thresholding of singular values is expressed by a multiplication of certain matrices, which is derived from a characteristic of CPA. The multiplication is also efficiently computed using the sparsity of signals. As a result, the computational cost is significantly reduced. Experimental results suggest the effectiveness of our method through several image processing applications based on matrix rank minimization with nuclear norm relaxation in terms of computation time and approximation precision.
Abstract:In this paper, we propose a learning-based supervised discrete hashing method. Binary hashing is widely used for large-scale image retrieval as well as video and document searches because the compact representation of binary code is essential for data storage and reasonable for query searches using bit-operations. The recently proposed Supervised Discrete Hashing (SDH) efficiently solves mixed-integer programming problems by alternating optimization and the Discrete Cyclic Coordinate descent (DCC) method. We show that the SDH model can be simplified without performance degradation based on some preliminary experiments; we call the approximate model for this the "Fast SDH" (FSDH) model. We analyze the FSDH model and provide a mathematically exact solution for it. In contrast to SDH, our model does not require an alternating optimization algorithm and does not depend on initial values. FSDH is also easier to implement than Iterative Quantization (ITQ). Experimental results involving a large-scale database showed that FSDH outperforms conventional SDH in terms of precision, recall, and computation time.