Abstract:This paper presents a multi-pose face recognition approach using hybrid face features descriptors (HFFD). The HFFD is a face descriptor containing of rich discriminant information that is created by fusing some frequency-based features extracted using both wavelet and DCT analysis of several different poses of 2D face images. The main aim of this method is to represent the multi-pose face images using a dominant frequency component with still having reasonable achievement compared to the recent multi-pose face recognition methods. The HFFD based face recognition tends to achieve better performance than that of the recent 2D-based face recognition method. In addition, the HFFD-based face recognition also is sufficiently to handle large face variability due to face pose variations .
Abstract:Social event detection in a static image is a very challenging problem and it's very useful for internet of things applications including automatic photo organization, ads recommender system, or image captioning. Several publications show that variety of objects, scene, and people can be very ambiguous for the system to decide the event that occurs in the image. We proposed the spatial pyramid configuration of convolutional neural network (CNN) classifier for social event detection in a static image. By applying the spatial pyramid configuration to the CNN classifier, the detail that occurs in the image can observe more accurately by the classifier. USED dataset provided by Ahmad et al. is used to evaluate our proposed method, which consists of two different image sets, EiMM, and SED dataset. As a result, the average accuracy of our system outperforms the baseline method by 15% and 2% respectively.
Abstract:In this paper, we propose a learning-based supervised discrete hashing method. Binary hashing is widely used for large-scale image retrieval as well as video and document searches because the compact representation of binary code is essential for data storage and reasonable for query searches using bit-operations. The recently proposed Supervised Discrete Hashing (SDH) efficiently solves mixed-integer programming problems by alternating optimization and the Discrete Cyclic Coordinate descent (DCC) method. We show that the SDH model can be simplified without performance degradation based on some preliminary experiments; we call the approximate model for this the "Fast SDH" (FSDH) model. We analyze the FSDH model and provide a mathematically exact solution for it. In contrast to SDH, our model does not require an alternating optimization algorithm and does not depend on initial values. FSDH is also easier to implement than Iterative Quantization (ITQ). Experimental results involving a large-scale database showed that FSDH outperforms conventional SDH in terms of precision, recall, and computation time.