Abstract:The illegal disposal of trash is a major public health and environmental concern. Disposing of trash in unplanned places poses serious health and environmental risks. We should try to restrict public trash cans as much as possible. This research focuses on automating the penalization of litterbugs, addressing the persistent problem of littering in public places. Traditional approaches relying on manual intervention and witness reporting suffer from delays, inaccuracies, and anonymity issues. To overcome these challenges, this paper proposes a fully automated system that utilizes surveillance cameras and advanced computer vision algorithms for litter detection, object tracking, and face recognition. The system accurately identifies and tracks individuals engaged in littering activities, attaches their identities through face recognition, and enables efficient enforcement of anti-littering policies. By reducing reliance on manual intervention, minimizing human error, and providing prompt identification, the proposed system offers significant advantages in addressing littering incidents. The primary contribution of this research lies in the implementation of the proposed system, leveraging advanced technologies to enhance surveillance operations and automate the penalization of litterbugs.
Abstract:We present an end-to-end computer vision pipeline to detect non-nutritive sucking (NNS) -- an infant sucking pattern with no nutrition delivered -- as a potential biomarker for developmental delays, using off-the-shelf baby monitor video footage. One barrier to clinical (or algorithmic) assessment of NNS stems from its sparsity, requiring experts to wade through hours of footage to find minutes of relevant activity. Our NNS activity segmentation algorithm solves this problem by identifying periods of NNS with high certainty -- up to 94.0\% average precision and 84.9\% average recall across 30 heterogeneous 60 s clips, drawn from our manually annotated NNS clinical in-crib dataset of 183 hours of overnight baby monitor footage from 19 infants. Our method is based on an underlying NNS action recognition algorithm, which uses spatiotemporal deep learning networks and infant-specific pose estimation, achieving 94.9\% accuracy in binary classification of 960 2.5 s balanced NNS vs. non-NNS clips. Tested on our second, independent, and public NNS in-the-wild dataset, NNS recognition classification reaches 92.3\% accuracy, and NNS segmentation achieves 90.8\% precision and 84.2\% recall.
Abstract:In mass manufacturing of jewellery, the gross loss is estimated before manufacturing to calculate the wax weight of the pattern that would be investment casted to make multiple identical pieces of jewellery. Machine learning is a technology that is a part of AI which helps create a model with decision-making capabilities based on a large set of user-defined data. In this paper, the authors found a way to use Machine Learning in the jewellery industry to estimate this crucial Gross Loss. Choosing a small data set of manufactured rings and via regression analysis, it was found out that there is a potential of reducing the error in estimation from +-2-3 to +-0.5 using ML Algorithms from historic data and attributes collected from the CAD file during the design phase itself. To evaluate the approach's viability, additional study must be undertaken with a larger data set.
Abstract:The most recent concern of all people on Earth is the increase in the concentration of greenhouse gas in the atmosphere. The concentration of these gases has risen rapidly over the last century and if the trend continues it can cause many adverse climatic changes. There have been ways implemented to curb this by the government by limiting processes that emit a higher amount of CO2, one such greenhouse gas. However, there is mounting evidence that the CO2 numbers supplied by the government do not accurately reflect the performance of automobiles on the road. Our proposal of using artificial intelligence techniques to improve a previously rudimentary process takes a radical tack, but it fits the bill given the situation. To determine which algorithms and models produce the greatest outcomes, we compared them all and explored a novel method of ensembling them. Further, this can be used to foretell the rise in global temperature and to ground crucial policy decisions like the adoption of electric vehicles. To estimate emissions from vehicles, we used machine learning, deep learning, and ensemble learning on a massive dataset.