Abstract:The most recent concern of all people on Earth is the increase in the concentration of greenhouse gas in the atmosphere. The concentration of these gases has risen rapidly over the last century and if the trend continues it can cause many adverse climatic changes. There have been ways implemented to curb this by the government by limiting processes that emit a higher amount of CO2, one such greenhouse gas. However, there is mounting evidence that the CO2 numbers supplied by the government do not accurately reflect the performance of automobiles on the road. Our proposal of using artificial intelligence techniques to improve a previously rudimentary process takes a radical tack, but it fits the bill given the situation. To determine which algorithms and models produce the greatest outcomes, we compared them all and explored a novel method of ensembling them. Further, this can be used to foretell the rise in global temperature and to ground crucial policy decisions like the adoption of electric vehicles. To estimate emissions from vehicles, we used machine learning, deep learning, and ensemble learning on a massive dataset.
Abstract:Business intelligence (BI) is any knowledge derived from existing data that may be strategically applied within a business. Data mining is a technique or method for extracting BI from data using statistical data modeling. Finding relationships or correlations between the various data items that have been collected can be used to boost business performance or at the very least better comprehend what is going on. Root cause analysis (RCA) is discovering the root causes of problems or events to identify appropriate solutions. RCA can show why an event occurred and this can help in avoiding occurrences of an issue in the future. This paper proposes a new clustering + association rule mining pipeline for getting business insights from data. The results of this pipeline are in the form of association rules having consequents, antecedents, and various metrics to evaluate these rules. The results of this pipeline can help in anchoring important business decisions and can also be used by data scientists for updating existing models or while developing new ones. The occurrence of any event is explained by its antecedents in the generated rules. Hence this output can also help in data-driven root cause analysis.