Abstract:The surge in counterfeit signatures has inflicted widespread inconveniences and formidable challenges for both individuals and organizations. This groundbreaking research paper introduces SigScatNet, an innovative solution to combat this issue by harnessing the potential of a Siamese deep learning network, bolstered by Scattering wavelets, to detect signature forgery and assess signature similarity. The Siamese Network empowers us to ascertain the authenticity of signatures through a comprehensive similarity index, enabling precise validation and comparison. Remarkably, the integration of Scattering wavelets endows our model with exceptional efficiency, rendering it light enough to operate seamlessly on cost-effective hardware systems. To validate the efficacy of our approach, extensive experimentation was conducted on two open-sourced datasets: the ICDAR SigComp Dutch dataset and the CEDAR dataset. The experimental results demonstrate the practicality and resounding success of our proposed SigScatNet, yielding an unparalleled Equal Error Rate of 3.689% with the ICDAR SigComp Dutch dataset and an astonishing 0.0578% with the CEDAR dataset. Through the implementation of SigScatNet, our research spearheads a new state-of-the-art in signature analysis in terms of EER scores and computational efficiency, offering an advanced and accessible solution for detecting forgery and quantifying signature similarities. By employing cutting-edge Siamese deep learning and Scattering wavelets, we provide a robust framework that paves the way for secure and efficient signature verification systems.
Abstract:In this paper, we propose a method for resume rating using Latent Dirichlet Allocation (LDA) and entity detection with SpaCy. The proposed method first extracts relevant entities such as education, experience, and skills from the resume using SpaCy's Named Entity Recognition (NER). The LDA model then uses these entities to rate the resume by assigning topic probabilities to each entity. Furthermore, we conduct a detailed analysis of the entity detection using SpaCy's NER and report its evaluation metrics. Using LDA, our proposed system breaks down resumes into latent topics and extracts meaningful semantic representations. With a vision to define our resume score to be more content-driven rather than a structure and keyword match driven, our model has achieved 77% accuracy with respect to only skills in consideration and an overall 82% accuracy with all attributes in consideration. (like college name, work experience, degree and skills)
Abstract:The most recent concern of all people on Earth is the increase in the concentration of greenhouse gas in the atmosphere. The concentration of these gases has risen rapidly over the last century and if the trend continues it can cause many adverse climatic changes. There have been ways implemented to curb this by the government by limiting processes that emit a higher amount of CO2, one such greenhouse gas. However, there is mounting evidence that the CO2 numbers supplied by the government do not accurately reflect the performance of automobiles on the road. Our proposal of using artificial intelligence techniques to improve a previously rudimentary process takes a radical tack, but it fits the bill given the situation. To determine which algorithms and models produce the greatest outcomes, we compared them all and explored a novel method of ensembling them. Further, this can be used to foretell the rise in global temperature and to ground crucial policy decisions like the adoption of electric vehicles. To estimate emissions from vehicles, we used machine learning, deep learning, and ensemble learning on a massive dataset.