Abstract:Generative Adversarial Networks (GANs) have risen to prominence in the field of deep learning, facilitating the generation of realistic data from random noise. The effectiveness of GANs often depends on the quality of feature extraction, a critical aspect of their architecture. This paper introduces L-WaveBlock, a novel and robust feature extractor that leverages the capabilities of the Discrete Wavelet Transform (DWT) with deep learning methodologies. L-WaveBlock is catered to quicken the convergence of GAN generators while simultaneously enhancing their performance. The paper demonstrates the remarkable utility of L-WaveBlock across three datasets, a road satellite imagery dataset, the CelebA dataset and the GoPro dataset, showcasing its ability to ease feature extraction and make it more efficient. By utilizing DWT, L-WaveBlock efficiently captures the intricate details of both structural and textural details, and further partitions feature maps into orthogonal subbands across multiple scales while preserving essential information at the same time. Not only does it lead to faster convergence, but also gives competent results on every dataset by employing the L-WaveBlock. The proposed method achieves an Inception Score of 3.6959 and a Structural Similarity Index of 0.4261 on the maps dataset, a Peak Signal-to-Noise Ratio of 29.05 and a Structural Similarity Index of 0.874 on the CelebA dataset. The proposed method performs competently to the state-of-the-art for the image denoising dataset, albeit not better, but still leads to faster convergence than conventional methods. With this, L-WaveBlock emerges as a robust and efficient tool for enhancing GAN-based image generation, demonstrating superior convergence speed and competitive performance across multiple datasets for image resolution, image generation and image denoising.
Abstract:The surge in counterfeit signatures has inflicted widespread inconveniences and formidable challenges for both individuals and organizations. This groundbreaking research paper introduces SigScatNet, an innovative solution to combat this issue by harnessing the potential of a Siamese deep learning network, bolstered by Scattering wavelets, to detect signature forgery and assess signature similarity. The Siamese Network empowers us to ascertain the authenticity of signatures through a comprehensive similarity index, enabling precise validation and comparison. Remarkably, the integration of Scattering wavelets endows our model with exceptional efficiency, rendering it light enough to operate seamlessly on cost-effective hardware systems. To validate the efficacy of our approach, extensive experimentation was conducted on two open-sourced datasets: the ICDAR SigComp Dutch dataset and the CEDAR dataset. The experimental results demonstrate the practicality and resounding success of our proposed SigScatNet, yielding an unparalleled Equal Error Rate of 3.689% with the ICDAR SigComp Dutch dataset and an astonishing 0.0578% with the CEDAR dataset. Through the implementation of SigScatNet, our research spearheads a new state-of-the-art in signature analysis in terms of EER scores and computational efficiency, offering an advanced and accessible solution for detecting forgery and quantifying signature similarities. By employing cutting-edge Siamese deep learning and Scattering wavelets, we provide a robust framework that paves the way for secure and efficient signature verification systems.
Abstract:Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns that affect millions of people worldwide. In medical practice, chest X-ray examinations have emerged as the norm for diagnosing diseases, particularly chest infections such as COVID-19. Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis in order to save lives. But with a variety of symptoms, medical diagnosis of these disorders poses special difficulties. It is essential to address their identification and timely diagnosis in order to successfully treat and prevent these illnesses. In this research, a multiclass classification approach using state-of-the-art methods for deep learning and image processing is proposed. This method takes into account the robustness and efficiency of the system in order to increase diagnostic precision of chest diseases. A comparison between a brand-new convolution neural network (CNN) and several transfer learning pre-trained models including VGG19, ResNet, DenseNet, EfficientNet, and InceptionNet is recommended. Publicly available and widely used research datasets like Shenzen, Montogomery, the multiclass Kaggle dataset and the NIH dataset were used to rigorously test the model. Recall, precision, F1-score, and Area Under Curve (AUC) score are used to evaluate and compare the performance of the proposed model. An AUC value of 0.95 for COVID-19, 0.99 for TB, and 0.98 for pneumonia is obtained using the proposed network. Recall and precision ratings of 0.95, 0.98, and 0.97, respectively, likewise met high standards.
Abstract:This research paper presents a novel approach to pothole detection using Deep Learning and Image Processing techniques. The proposed system leverages the VGG16 model for feature extraction and utilizes a custom Siamese network with triplet loss, referred to as RoadScan. The system aims to address the critical issue of potholes on roads, which pose significant risks to road users. Accidents due to potholes on the roads have led to numerous accidents. Although it is necessary to completely remove potholes, it is a time-consuming process. Hence, a general road user should be able to detect potholes from a safe distance in order to avoid damage. Existing methods for pothole detection heavily rely on object detection algorithms which tend to have a high chance of failure owing to the similarity in structures and textures of a road and a pothole. Additionally, these systems utilize millions of parameters thereby making the model difficult to use in small-scale applications for the general citizen. By analyzing diverse image processing methods and various high-performing networks, the proposed model achieves remarkable performance in accurately detecting potholes. Evaluation metrics such as accuracy, EER, precision, recall, and AUROC validate the effectiveness of the system. Additionally, the proposed model demonstrates computational efficiency and cost-effectiveness by utilizing fewer parameters and data for training. The research highlights the importance of technology in the transportation sector and its potential to enhance road safety and convenience. The network proposed in this model performs with a 96.12 % accuracy, 3.89 % EER, and a 0.988 AUROC value, which is highly competitive with other state-of-the-art works.