Abstract:Path planning for wheeled mobile robots is a critical component in the field of automation and intelligent transportation systems. Car-like vehicles, which have non-holonomic constraints on their movement capability impose additional requirements on the planned paths. Traditional path planning algorithms, such as A* , are widely used due to their simplicity and effectiveness in finding optimal paths in complex environments. However, these algorithms often do not consider vehicle dynamics, resulting in paths that are infeasible or impractical for actual driving. Specifically, a path that minimizes the number of grid cells may still be too curvy or sharp for a car-like vehicle to navigate smoothly. This paper addresses the need for a path planning solution that not only finds a feasible path but also ensures that the path is smooth and drivable. By adapting the A* algorithm for a curvature constraint and incorporating a cost function that considers the smoothness of possible paths, we aim to bridge the gap between grid based path planning and smooth paths that are drivable by car-like vehicles. The proposed method leverages motion primitives, pre-computed using a ribbon based path planner that produces smooth paths of minimum curvature. The motion primitives guide the A* algorithm in finding paths of minimal length and curvature. With the proposed modification on the A* algorithm, the planned paths can be constraint to have a minimum turning radius much larger than the grid size. We demonstrate the effectiveness of the proposed algorithm in different unstructured environments. In a two-stage planning approach, first the modified A* algorithm finds a grid-based path and the ribbon based path planner creates a smooth path within the area of grid cells. The resulting paths are smooth with small curvatures independent of the orientation of the grid axes and even in presence of sharp obstacles.
Abstract:With the flourishing development of intelligent warehousing systems, the technology of Automated Guided Vehicle (AGV) has experienced rapid growth. Within intelligent warehousing environments, AGV is required to safely and rapidly plan an optimal path in complex and dynamic environments. Most research has studied deep reinforcement learning to address this challenge. However, in the environments with sparse extrinsic rewards, these algorithms often converge slowly, learn inefficiently or fail to reach the target. Random Network Distillation (RND), as an exploration enhancement, can effectively improve the performance of proximal policy optimization, especially enhancing the additional intrinsic rewards of the AGV agent which is in sparse reward environments. Moreover, most of the current research continues to use 2D grid mazes as experimental environments. These environments have insufficient complexity and limited action sets. To solve this limitation, we present simulation environments of AGV path planning with continuous actions and positions for AGVs, so that it can be close to realistic physical scenarios. Based on our experiments and comprehensive analysis of the proposed method, the results demonstrate that our proposed method enables AGV to more rapidly complete path planning tasks with continuous actions in our environments. A video of part of our experiments can be found at https://youtu.be/lwrY9YesGmw.