Abstract:This work presents an unsupervised deep learning scheme that exploiting high-dimensional assisted score-based generative model for color image restoration tasks. Considering that the sample number and internal dimension in score-based generative model have key influence on estimating the gradients of data distribution, two different high-dimensional ways are proposed: The channel-copy transformation increases the sample number and the pixel-scale transformation decreases feasible space dimension. Subsequently, a set of high-dimensional tensors represented by these transformations are used to train the network through denoising score matching. Then, sampling is performed by annealing Langevin dynamics and alternative data-consistency update. Furthermore, to alleviate the difficulty of learning high-dimensional representation, a progressive strategy is proposed to leverage the performance. The proposed unsupervised learning and iterative restoration algo-rithm, which involves a pre-trained generative network to obtain prior, has transparent and clear interpretation compared to other data-driven approaches. Experimental results on demosaicking and inpainting conveyed the remarkable performance and diversity of our proposed method.
Abstract:This paper proposes an iterative generative model for solving the automatic colorization problem. Although previous researches have shown the capability to generate plausible color, the edge color overflow and the requirement of the reference images still exist. The starting point of the unsupervised learning in this study is the observation that the gradient map possesses latent information of the image. Therefore, the inference process of the generative modeling is conducted in joint intensity-gradient domain. Specifically, a set of intensity-gradient formed high-dimensional tensors, as the network input, are used to train a powerful noise conditional score network at the training phase. Furthermore, the joint intensity-gradient constraint in data-fidelity term is proposed to limit the degree of freedom within generative model at the iterative colorization stage, and it is conducive to edge-preserving. Extensive experiments demonstrated that the system outperformed state-of-the-art methods whether in quantitative comparisons or user study.