Abstract:An important benefit of multi-objective search is that it maintains a diverse population of candidates, which helps in deceptive problems in particular. Not all diversity is useful, however: candidates that optimize only one objective while ignoring others are rarely helpful. A recent solution is to replace the original objectives by their linear combinations, thus focusing the search on the most useful trade-offs between objectives. To compensate for the loss of diversity, this transformation is accompanied by a selection mechanism that favors novelty. This paper improves this approach further by introducing novelty pulsation, i.e. a systematic method to alternate between novelty selection and local optimization. In the highly deceptive problem of discovering minimal sorting networks, it finds state-of-the-art solutions significantly faster than before. In fact, our method so far has established a new world record for the 20-lines sorting network with 91 comparators. In the real-world problem of stock trading, it discovers solutions that generalize significantly better on unseen data. Composite Novelty Pulsation is therefore a promising approach to solving deceptive real-world problems through multi-objective optimization.
Abstract:Bounded rationality, that is, decision-making and planning under resource limitations, is widely regarded as an important open problem in artificial intelligence, reinforcement learning, computational neuroscience and economics. This paper offers a consolidated presentation of a theory of bounded rationality based on information-theoretic ideas. We provide a conceptual justification for using the free energy functional as the objective function for characterizing bounded-rational decisions. This functional possesses three crucial properties: it controls the size of the solution space; it has Monte Carlo planners that are exact, yet bypass the need for exhaustive search; and it captures model uncertainty arising from lack of evidence or from interacting with other agents having unknown intentions. We discuss the single-step decision-making case, and show how to extend it to sequential decisions using equivalence transformations. This extension yields a very general class of decision problems that encompass classical decision rules (e.g. EXPECTIMAX and MINIMAX) as limit cases, as well as trust- and risk-sensitive planning.