Abstract:Localization within a known environment is a crucial capability for mobile robots. Simultaneous Localization and Mapping (SLAM) is a prominent solution to this problem. SLAM is a framework that consists of a diverse set of computational tasks ranging from real-time tracking to computation-intensive map optimization. This combination can present a challenge for resource-limited mobile robots. Previously, edge-assisted SLAM methods have demonstrated promising real-time execution capabilities by offloading heavy computations while performing real-time tracking onboard. However, the common approach of utilizing a client-server architecture for offloading is sensitive to server and network failures. In this article, we propose a novel edge-assisted SLAM framework capable of self-organizing fully distributed SLAM execution across a network of devices or functioning on a single device without connectivity. The architecture consists of three layers and is designed to be device-agnostic, resilient to network failures, and minimally invasive to the core SLAM system. We have implemented and demonstrated the framework for monocular ORB SLAM3 and evaluated it in both fully distributed and standalone SLAM configurations against the ORB SLAM3. The experiment results demonstrate that the proposed design matches the accuracy and resource utilization of the monolithic approach while enabling collaborative execution.
Abstract:Video deblurring aims at recovering sharp details from a sequence of blurry frames. Despite the proliferation of depth sensors in mobile phones and the potential of depth information to guide deblurring, depth-aware deblurring has received only limited attention. In this work, we introduce the 'Depth-Aware VIdeo DEblurring' (DAVIDE) dataset to study the impact of depth information in video deblurring. The dataset comprises synchronized blurred, sharp, and depth videos. We investigate how the depth information should be injected into the existing deep RGB video deblurring models, and propose a strong baseline for depth-aware video deblurring. Our findings reveal the significance of depth information in video deblurring and provide insights into the use cases where depth cues are beneficial. In addition, our results demonstrate that while the depth improves deblurring performance, this effect diminishes when models are provided with a longer temporal context. Project page: https://germanftv.github.io/DAVIDE.github.io/ .
Abstract:Recent results suggest that splitting topological navigation into robot-independent and robot-specific components improves navigation performance by enabling the robot-independent part to be trained with data collected by different robot types. However, the navigation methods are still limited by the scarcity of suitable training data and suffer from poor computational scaling. In this work, we present PlaceNav, subdividing the robot-independent part into navigation-specific and generic computer vision components. We utilize visual place recognition for the subgoal selection of the topological navigation pipeline. This makes subgoal selection more efficient and enables leveraging large-scale datasets from non-robotics sources, increasing training data availability. Bayesian filtering, enabled by place recognition, further improves navigation performance by increasing the temporal consistency of subgoals. Our experimental results verify the design and the new model obtains a 76% higher success rate in indoor and 23% higher in outdoor navigation tasks with higher computational efficiency.