Abstract:Video deblurring aims at recovering sharp details from a sequence of blurry frames. Despite the proliferation of depth sensors in mobile phones and the potential of depth information to guide deblurring, depth-aware deblurring has received only limited attention. In this work, we introduce the 'Depth-Aware VIdeo DEblurring' (DAVIDE) dataset to study the impact of depth information in video deblurring. The dataset comprises synchronized blurred, sharp, and depth videos. We investigate how the depth information should be injected into the existing deep RGB video deblurring models, and propose a strong baseline for depth-aware video deblurring. Our findings reveal the significance of depth information in video deblurring and provide insights into the use cases where depth cues are beneficial. In addition, our results demonstrate that while the depth improves deblurring performance, this effect diminishes when models are provided with a longer temporal context. Project page: https://germanftv.github.io/DAVIDE.github.io/ .
Abstract:Camera motion introduces spatially varying blur due to the depth changes in the 3D world. This work investigates scene configurations where such blur is produced under parallax camera motion. We present a simple, yet accurate, Image Compositing Blur (ICB) model for depth-dependent spatially varying blur. The (forward) model produces realistic motion blur from a single image, depth map, and camera trajectory. Furthermore, we utilize the ICB model, combined with a coordinate-based MLP, to learn a sharp neural representation from the blurred input. Experimental results are reported for synthetic and real examples. The results verify that the ICB forward model is computationally efficient and produces realistic blur, despite the lack of occlusion information. Additionally, our method for restoring a sharp representation proves to be a competitive approach for the deblurring task.