Abstract:Vision-and-language navigation (VLN) aims to guide autonomous agents through real-world environments by integrating visual and linguistic cues. While substantial progress has been made in understanding these interactive modalities in ground-level navigation, aerial navigation remains largely underexplored. This is primarily due to the scarcity of resources suitable for real-world, city-scale aerial navigation studies. To bridge this gap, we introduce CityNav, a new dataset for language-goal aerial navigation using a 3D point cloud representation from real-world cities. CityNav includes 32,637 natural language descriptions paired with human demonstration trajectories, collected from participants via a new web-based 3D simulator developed for this research. Each description specifies a navigation goal, leveraging the names and locations of landmarks within real-world cities. We also provide baseline models of navigation agents that incorporate an internal 2D spatial map representing landmarks referenced in the descriptions. We benchmark the latest aerial navigation baselines and our proposed model on the CityNav dataset. The results using this dataset reveal the following key findings: (i) Our aerial agent models trained on human demonstration trajectories outperform those trained on shortest path trajectories, highlighting the importance of human-driven navigation strategies; (ii) The integration of a 2D spatial map significantly enhances navigation efficiency at city scale. Our dataset and code are available at https://water-cookie.github.io/city-nav-proj/
Abstract:City-scale 3D point cloud is a promising way to express detailed and complicated outdoor structures. It encompasses both the appearance and geometry features of segmented city components, including cars, streets, and buildings, that can be utilized for attractive applications such as user-interactive navigation of autonomous vehicles and drones. However, compared to the extensive text annotations available for images and indoor scenes, the scarcity of text annotations for outdoor scenes poses a significant challenge for achieving these applications. To tackle this problem, we introduce the CityRefer dataset for city-level visual grounding. The dataset consists of 35k natural language descriptions of 3D objects appearing in SensatUrban city scenes and 5k landmarks labels synchronizing with OpenStreetMap. To ensure the quality and accuracy of the dataset, all descriptions and labels in the CityRefer dataset are manually verified. We also have developed a baseline system that can learn encoded language descriptions, 3D object instances, and geographical information about the city's landmarks to perform visual grounding on the CityRefer dataset. To the best of our knowledge, the CityRefer dataset is the largest city-level visual grounding dataset for localizing specific 3D objects.