Abstract:There is significant evidence that real-world communication cannot be reduced to sending signals with context-independent meaning. In this work, based on a variant of the classical Lewis (1969) signaling model, we explore the conditions for the emergence of context-dependent communication in a situated scenario. In particular, we demonstrate that pressure to minimise the vocabulary size is sufficient for such emergence. At the same time, we study the environmental conditions and cognitive capabilities that enable contextual disambiguation of symbol meanings. We show that environmental constraints on the receiver's referent choice can be unilaterally exploited by the sender, without disambiguation capabilities on the receiver's end. Consistent with common assumptions, the sender's awareness of the context appears to be required for contextual communication. We suggest that context-dependent communication is a situated multilayered phenomenon, crucially influenced by environment properties such as distribution of contexts. The model developed in this work is a demonstration of how signals may be ambiguous out of context, but still allow for near-perfect communication accuracy.
Abstract:Computational simulations are a popular method for testing hypotheses about the emergence of communication. This kind of research is performed in a variety of traditions including language evolution, developmental psychology, cognitive science, machine learning, robotics, etc. The motivations for the models are different, but the operationalizations and methods used are often similar. We identify the assumptions and explanatory targets of several most representative models and summarise the known results. We claim that some of the assumptions -- such as portraying meaning in terms of mapping, focusing on the descriptive function of communication, modelling signals with amodal tokens -- may hinder the success of modelling. Relaxing these assumptions and foregrounding the interactions of embodied and situated agents allows one to systematise the multiplicity of pressures under which symbolic systems evolve. In line with this perspective, we sketch the road towards modelling the emergence of meaningful symbolic communication, where symbols are simultaneously grounded in action and perception and form an abstract system.
Abstract:Compositionality is an important explanatory target in emergent communication and language evolution. The vast majority of computational models of communication account for the emergence of only a very basic form of compositionality: trivial compositionality. A compositional protocol is trivially compositional if the meaning of a complex signal (e.g. blue circle) boils down to the intersection of meanings of its constituents (e.g. the intersection of the set of blue objects and the set of circles). A protocol is non-trivially compositional (NTC) if the meaning of a complex signal (e.g. biggest apple) is a more complex function of the meanings of their constituents. In this paper, we review several metrics of compositionality used in emergent communication and experimentally show that most of them fail to detect NTC - i.e. they treat non-trivial compositionality as a failure of compositionality. The one exception is tree reconstruction error, a metric motivated by formal accounts of compositionality. These results emphasise important limitations of emergent communication research that could hamper progress on modelling the emergence of NTC.
Abstract:This paper explores a novel approach to achieving emergent compositional communication in multi-agent systems. We propose a training regime implementing template transfer, the idea of carrying over learned biases across contexts. In our method, a sender-receiver pair is first trained with disentangled loss functions and then the receiver is transferred to train a new sender with a standard loss. Unlike other methods (e.g. the obverter algorithm), our approach does not require imposing inductive biases on the architecture of the agents. We experimentally show the emergence of compositional communication using topographical similarity, zero-shot generalization and context independence as evaluation metrics. The presented approach is connected to an important line of work in semiotics and developmental psycholinguistics: it supports a conjecture that compositional communication is scaffolded on simpler communication protocols.
Abstract:This paper draws a parallel between similarity-based categorisation models developed in cognitive psychology and the nearest neighbour classifier (1-NN) in machine learning. Conceived as a result of the historical rivalry between prototype theories (abstraction) and exemplar theories (memorisation), recent models of human categorisation seek a compromise in-between. Regarding the stimuli (entities to be categorised) as points in a metric space, machine learning offers a large collection of methods to select a small, representative and discriminative point set. These methods are known under various names: instance selection, data editing, prototype selection, prototype generation or prototype replacement. The nearest neighbour classifier is used with the selected reference set. Such a set can be interpreted as a data-driven categorisation model. We juxtapose the models from the two fields to enable cross-referencing. We believe that both machine learning and cognitive psychology can draw inspiration from the comparison and enrich their repertoire of similarity-based models.