Abstract:Deep learning fostered a leap ahead in automated melanoma screening in the last two years. Those models, however, are expensive to train and difficult to parameterize. Objective: We investigate methodological issues for designing and evaluating deep learning models for melanoma detection. We explore ten choices faced by researchers: use of transfer learning, model architecture, train dataset, image resolution, type of data augmentation, input normalization, use of segmentation, duration of training, additional use of SVM, and test data augmentation. Methods: We perform two full factorial experiment, for five different test datasets, resulting in 2560 exhaustive trials in our main experiment, and 1280 trials in our assessment of transfer learning. We analyze both with multi-way ANOVA. We use the exhaustive trials to simulate sequential decisions and ensembles, with and without the use of privileged information from the test set. Results - main experiment: Amount of train data has disproportionate influence, explaining almost half the variation in performance. Of the other factors, test data augmentation and input resolution are the most influential. Deeper models, when combined, with extra data, also help. - transfer experiment: Transfer learning is critical, its absence brings huge performance penalties. - simulations: Ensembles of models are the best option to provide reliable results with limited resources, without using privileged information and sacrificing methodological rigor. Conclusions and Significance: Advancing research on automated melanoma screening requires curating larger public datasets. Indirect use of privileged information from the test set to design the models is a subtle, but frequent methodological mistake that leads to overoptimistic results. Ensembles of models are a cost-effective alternative to the expensive full-factorial and to the unstable sequential designs.
Abstract:This extended abstract describes the participation of RECOD Titans in parts 1 and 3 of the ISIC Challenge 2017 "Skin Lesion Analysis Towards Melanoma Detection" (ISBI 2017). Although our team has a long experience with melanoma classification, the ISIC Challenge 2017 was the very first time we worked on skin-lesion segmentation. For part 1 (segmentation), our final submission used four of our models: two trained with all 2000 samples, without a validation split, for 250 and for 500 epochs respectively; and other two trained and validated with two different 1600/400 splits, for 220 epochs. Those four models, individually, achieved between 0.780 and 0.783 official validation scores. Our final submission averaged the output of those four models achieved a score of 0.793. For part 3 (classification), the submitted test run as well as our last official validation run were the result from a meta-model that assembled seven base deep-learning models: three based on Inception-V4 trained on our largest dataset; three based on Inception trained on our smallest dataset; and one based on ResNet-101 trained on our smaller dataset. The results of those component models were stacked in a meta-learning layer based on an SVM trained on the validation set of our largest dataset.
Abstract:We investigate adversarial attacks for autoencoders. We propose a procedure that distorts the input image to mislead the autoencoder in reconstructing a completely different target image. We attack the internal latent representations, attempting to make the adversarial input produce an internal representation as similar as possible as the target's. We find that autoencoders are much more robust to the attack than classifiers: while some examples have tolerably small input distortion, and reasonable similarity to the target image, there is a quasi-linear trade-off between those aims. We report results on MNIST and SVHN datasets, and also test regular deterministic autoencoders, reaching similar conclusions in all cases. Finally, we show that the usual adversarial attack for classifiers, while being much easier, also presents a direct proportion between distortion on the input, and misdirection on the output. That proportionality however is hidden by the normalization of the output, which maps a linear layer into non-linear probabilities.