Abstract:Physical layer security (PLS) has received a growing interest from the research community for its ability to safeguard data confidentiality without relying on key distribution or encryption/decryption. However, the evolution towards the 5G technology and beyond poses new security challenges that must be addressed in order to fulfill the unprecedented performance requirements of future wireless networks. Among the potential enabling technologies, RIS has attracted extensive attention due to its ability to proactively and intelligently reconfigure the wireless propagation environment to combat dynamic wireless channel impairments. Consequently, the RIS technology can be adopted to improve the information-theoretic security of both RF and OWC systems. This survey paper provides a comprehensive overview of the information-theoretic security of RIS-based RF and optical systems. The article first discusses the fundamental concepts of PLS and RIS technologies, followed by their combination in both RF and OWC systems. Subsequently, some optimization techniques are presented in the context of the underlying system model, followed by an assessment of the impact of RIS-assisted PLS through a comprehensive performance analysis. Given that the computational complexity of future communication systems that adopt RIS-assisted PLS is likely to increase rapidly as the number of interactions between the users and infrastructure grows, ML is seen as a promising approach to address this complexity issue while sustaining or improving the network performance. A discussion of recent research studies on RIS-assisted PLS-based systems embedded with ML is presented. Furthermore, some important open research challenges are proposed and discussed to provide insightful future research directions, with the aim of moving a step closer towards the development and implementation of the forthcoming 6G wireless technology.
Abstract:The acquisition of accurate channel state information (CSI) is of utmost importance since it provides performance improvement of wireless communication systems. However, acquiring accurate CSI, which can be done through channel estimation or channel prediction, is an intricate task due to the complexity of the time-varying and frequency selectivity of the wireless environment. To this end, we propose an efficient machine learning (ML)-based technique for channel prediction in orthogonal frequency-division multiplexing (OFDM) sub-bands. The novelty of the proposed approach lies in the training of channel fading samples used to estimate future channel behaviour in selective fading.
Abstract:In this paper, the privacy of wireless transmissions is improved through the use of an efficient technique termed dynamic directional modulation (DDM), and is subsequently assessed in terms of the measure of information leakage. Recently, a variation of DDM termed low-power dynamic directional modulation (LPDDM) has attracted significant attention as a prominent secure transmission method due to its ability to further improve the privacy of wireless communications. Roughly speaking, this modulation operates by randomly selecting the transmitting antenna from an antenna array whose radiation pattern is well known. Thereafter, the modulator adjusts the constellation phase so as to ensure that only the legitimate receiver recovers the information. To begin with, we highlight some privacy boundaries inherent to the underlying system. In addition, we propose features that the antenna array must meet in order to increase the privacy of a wireless communication system. Last, we adopt a uniform circular monopole antenna array with equiprobable transmitting antennas in order to assess the impact of DDM on the information leakage. It is shown that the bit error rate, while being a useful metric in the evaluation of wireless communication systems, does not provide the full information about the vulnerability of the underlying system.
Abstract:Wireless Body Area Networks (WBANs) comprise a network of sensors subcutaneously implanted or placed near the body surface and facilitate continuous monitoring of health parameters of a patient. Research endeavours involving WBAN are directed towards effective transmission of detected parameters to a Local Processing Unit (LPU, usually a mobile device) and analysis of the parameters at the LPU or a back-end cloud. An important concern in WBAN is the lightweight nature of WBAN nodes and the need to conserve their energy. This is especially true for subcutaneously implanted nodes that cannot be recharged or regularly replaced. Work in energy conservation is mostly aimed at optimising the routing of signals to minimise energy expended. In this paper, a simple yet innovative approach to energy conservation and detection of alarming health status is proposed. Energy conservation is ensured through a two-tier approach wherein the first tier eliminates `uninteresting' health parameter readings at the site of a sensing node and prevents these from being transmitted across the WBAN to the LPU. A reading is categorised as uninteresting if it deviates very slightly from its immediately preceding reading and does not provide new insight on the patient's well being. In addition to this, readings that are faulty and emanate from possible sensor malfunctions are also eliminated. These eliminations are done at the site of the sensor using algorithms that are light enough to effectively function in the extremely resource-constrained environments of the sensor nodes. We notice, through experiments, that this eliminates and thus reduces around 90% of the readings that need to be transmitted to the LPU leading to significant energy savings. Furthermore, the proper functioning of these algorithms in such constrained environments is confirmed and validated over a hardware simulation set up. The second tier of assessment includes a proposed anomaly detection model at the LPU that is capable of identifying anomalies from streaming health parameter readings and indicates an adverse medical condition. In addition to being able to handle streaming data, the model works within the resource-constrained environments of an LPU and eliminates the need of transmitting the data to a back-end cloud, ensuring further energy savings. The anomaly detection capability of the model is validated using data available from the critical care units of hospitals and is shown to be superior to other anomaly detection techniques.