Abstract:In this paper, the privacy of wireless transmissions is improved through the use of an efficient technique termed dynamic directional modulation (DDM), and is subsequently assessed in terms of the measure of information leakage. Recently, a variation of DDM termed low-power dynamic directional modulation (LPDDM) has attracted significant attention as a prominent secure transmission method due to its ability to further improve the privacy of wireless communications. Roughly speaking, this modulation operates by randomly selecting the transmitting antenna from an antenna array whose radiation pattern is well known. Thereafter, the modulator adjusts the constellation phase so as to ensure that only the legitimate receiver recovers the information. To begin with, we highlight some privacy boundaries inherent to the underlying system. In addition, we propose features that the antenna array must meet in order to increase the privacy of a wireless communication system. Last, we adopt a uniform circular monopole antenna array with equiprobable transmitting antennas in order to assess the impact of DDM on the information leakage. It is shown that the bit error rate, while being a useful metric in the evaluation of wireless communication systems, does not provide the full information about the vulnerability of the underlying system.
Abstract:This work introduces a new perspective for physical media sharing in multiuser communication by jointly considering (i) the meaning of the transmitted message and (ii) its function at the end user. Specifically, we have defined a scenario where multiple users (sensors) are continuously transmitting their own states concerning a predetermined event. On the receiver side there is an alarm monitoring system, whose function is to decide whether such a predetermined event has happened in a certain time period and, if yes, in which user. The media access control protocol proposed constitutes an alternative approach to the conventional physical layer methods, because the receiver does not decode the received waveform directly; rather, the relative position of the absence or presence of energy within a multidimensional resource space carries the (semantic) information. The protocol introduced here provides high efficiency in multiuser networks that operate with event-triggered sampling by enabling a constructive reconstruction of transmission collisions. We have demonstrated that the proposed method leads to a better event transmission efficiency than conventional methods like TDMA and slotted ALOHA. Remarkably, the proposed method achieves 100\% efficiency and 0\% error probability in almost all the studied cases, while consistently outperforming TDMA and slotted ALOHA.