Abstract:Robust integration of physical knowledge and data is key to improve computational simulations, such as Earth system models. Data assimilation is crucial for achieving this goal because it provides a systematic framework to calibrate model outputs with observations, which can include remote sensing imagery and ground station measurements, with uncertainty quantification. Conventional methods, including Kalman filters and variational approaches, inherently rely on simplifying linear and Gaussian assumptions, and can be computationally expensive. Nevertheless, with the rapid adoption of data-driven methods in many areas of computational sciences, we see the potential of emulating traditional data assimilation with deep learning, especially generative models. In particular, the diffusion-based probabilistic framework has large overlaps with data assimilation principles: both allows for conditional generation of samples with a Bayesian inverse framework. These models have shown remarkable success in text-conditioned image generation or image-controlled video synthesis. Likewise, one can frame data assimilation as observation-conditioned state calibration. In this work, we propose SLAMS: Score-based Latent Assimilation in Multimodal Setting. Specifically, we assimilate in-situ weather station data and ex-situ satellite imagery to calibrate the vertical temperature profiles, globally. Through extensive ablation, we demonstrate that SLAMS is robust even in low-resolution, noisy, and sparse data settings. To our knowledge, our work is the first to apply deep generative framework for multimodal data assimilation using real-world datasets; an important step for building robust computational simulators, including the next-generation Earth system models. Our code is available at: https://github.com/yongquan-qu/SLAMS
Abstract:Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster readiness, reduced economic risk, and improved policy-making amidst climate change. Yet, S2S prediction remains challenging due to the chaotic nature of the system. At present, existing benchmarks for weather and climate applications, tend to (1) have shorter forecasting range of up-to 14 days, (2) do not include a wide range of operational baseline forecasts, and (3) lack physics-based constraints for explainability. Thus, we propose ChaosBench, a large-scale, multi-channel, physics-based benchmark for S2S prediction. ChaosBench has over 460K frames of real-world observations and simulations, each with 60 variable-channels and spanning for up-to 45 years. We also propose several physics-based, in addition to vision-based metrics, that enables for a more physically-consistent model. Furthermore, we include a diverse set of physics-based forecasts from 4 national weather agencies as baselines to our data-driven counterpart. We establish two tasks that vary in complexity: full and sparse dynamics prediction. Our benchmark is one of the first to perform large-scale evaluation on existing models including PanguWeather, FourCastNetV2, GraphCast, and ClimaX, and finds methods originally developed for weather-scale applications fails on S2S task. We release our benchmark code and datasets at https://leap-stc.github.io/ChaosBench.
Abstract:The global carbon cycle is a key process to understand how our climate is changing. However, monitoring the dynamics is difficult because a high-resolution robust measurement of key state parameters including the aboveground carbon biomass (AGB) is required. Here, we use deep neural network to generate a wall-to-wall map of AGB within the Continental USA (CONUS) with 30-meter spatial resolution for the year 2021. We combine radar and optical hyperspectral imagery, with a physical climate parameter of SIF-based GPP. Validation results show that a masked variation of UNet has the lowest validation RMSE of 37.93 $\pm$ 1.36 Mg C/ha, as compared to 52.30 $\pm$ 0.03 Mg C/ha for random forest algorithm. Furthermore, models that learn from SIF-based GPP in addition to radar and optical imagery reduce validation RMSE by almost 10% and the standard deviation by 40%. Finally, we apply our model to measure losses in AGB from the recent 2021 Caldor wildfire in California, and validate our analysis with Sentinel-based burn index.