Abstract:Teeth localization, segmentation, and labeling from intra-oral 3D scans are essential tasks in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, developing automated algorithms for teeth analysis presents significant challenges due to variations in dental anatomy, imaging protocols, and limited availability of publicly accessible data. To address these challenges, the 3DTeethSeg'22 challenge was organized in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2022, with a call for algorithms tackling teeth localization, segmentation, and labeling from intraoral 3D scans. A dataset comprising a total of 1800 scans from 900 patients was prepared, and each tooth was individually annotated by a human-machine hybrid algorithm. A total of 6 algorithms were evaluated on this dataset. In this study, we present the evaluation results of the 3DTeethSeg'22 challenge. The 3DTeethSeg'22 challenge code can be accessed at: https://github.com/abenhamadou/3DTeethSeg22_challenge
Abstract:We present our method for gestational age at birth prediction for the SLCN (surface learning for clinical neuroimaging) challenge. Our method is based on a multi-view shape analysis technique that captures 2D renderings of a 3D object from different viewpoints. We render the brain features on the surface of the sphere and then the 2D images are analyzed via 2D CNNs and an attention layer for the regression task. The regression task achieves a MAE of 1.637 +- 1.3 on the Native space and MAE of 1.38 +- 1.14 on the template space. The source code for this project is available in our github repository https://github.com/MathieuLeclercq/SLCN_challenge_UNC