IRIT
Abstract:Text-to-image generation has recently emerged as a viable alternative to text-to-image retrieval, due to the visually impressive results of generative diffusion models. Although query performance prediction is an active research topic in information retrieval, to the best of our knowledge, there is no prior study that analyzes the difficulty of queries (prompts) in text-to-image generation, based on human judgments. To this end, we introduce the first dataset of prompts which are manually annotated in terms of image generation performance. In order to determine the difficulty of the same prompts in image retrieval, we also collect manual annotations that represent retrieval performance. We thus propose the first benchmark for joint text-to-image prompt and query performance prediction, comprising 10K queries. Our benchmark enables: (i) the comparative assessment of the difficulty of prompts/queries in image generation and image retrieval, and (ii) the evaluation of prompt/query performance predictors addressing both generation and retrieval. We present results with several pre-generation/retrieval and post-generation/retrieval performance predictors, thus providing competitive baselines for future research. Our benchmark and code is publicly available under the CC BY 4.0 license at https://github.com/Eduard6421/PQPP.
Abstract:Semantic relations among entities are a widely accepted method for relation extraction. PromptORE (Prompt-based Open Relation Extraction) was designed to improve relation extraction with Large Language Models on generalistic documents. However, it is less effective when applied to historical documents, in languages other than English. In this study, we introduce an adaptation of PromptORE to extract relations from specialized documents, namely digital transcripts of trials from the Spanish Inquisition. Our approach involves fine-tuning transformer models with their pretraining objective on the data they will perform inference. We refer to this process as "biasing". Our Biased PromptORE addresses complex entity placements and genderism that occur in Spanish texts. We solve these issues by prompt engineering. We evaluate our method using Encoder-like models, corroborating our findings with experts' assessments. Additionally, we evaluate the performance using a binomial classification benchmark. Our results show a substantial improvement in accuracy -up to a 50% improvement with our Biased PromptORE models in comparison to the baseline models using standard PromptORE.
Abstract:Query processing in search engines can be optimized for use for all queries. For this, system component parameters such as the weighting function or the automatic query expansion model can be optimized or learned from past queries. However, it may be more interesting to optimize the processing thread on a query-by-query basis by adjusting the component parameters; this is what selective query processing does. Selective query processing uses one of the candidate processing threads chosen at query time. The choice is based on query features. In this paper, we examine selective query processing in different settings, both in terms of effectiveness and efficiency; this includes selective query expansion and other forms of selective query processing (e.g., when the term weighting function varies or when the expansion model varies). We found that the best trade-off between effectiveness and efficiency is obtained when using the best trained processing thread and its query expansion counter part. This seems to be also the most natural for a real-word engine since the two threads use the same core engine (e.g., same term weighting function).
Abstract:To date, query performance prediction (QPP) in the context of content-based image retrieval remains a largely unexplored task, especially in the query-by-example scenario, where the query is an image. To boost the exploration of the QPP task in image retrieval, we propose the first benchmark for image query performance prediction (iQPP). First, we establish a set of four data sets (PASCAL VOC 2012, Caltech-101, ROxford5k and RParis6k) and estimate the ground-truth difficulty of each query as the average precision or the precision@k, using two state-of-the-art image retrieval models. Next, we propose and evaluate novel pre-retrieval and post-retrieval query performance predictors, comparing them with existing or adapted (from text to image) predictors. The empirical results show that most predictors do not generalize across evaluation scenarios. Our comprehensive experiments indicate that iQPP is a challenging benchmark, revealing an important research gap that needs to be addressed in future work. We release our code and data as open source at https://github.com/Eduard6421/iQPP, to foster future research.
Abstract:An aircraft conflict occurs when two or more aircraft cross at a certain distance at the same time. Specific air traffic controllers are assigned to solve such conflicts. A controller needs to consider various types of information in order to solve a conflict. The most common and preliminary information is the coordinate position of the involved aircraft. Additionally, a controller has to take into account more information such as flight planning, weather, restricted territory, etc. The most important challenges a controller has to face are: to think about the issues involved and make a decision in a very short time. Due to the increased number of aircraft, it is crucial to reduce the workload of the controllers and help them make quick decisions. A conflict can be solved in many ways, therefore, we consider this problem as a multi-label classification problem. In doing so, we are proposing a multi-label classification model which provides multiple heading advisories for a given conflict. This model we named CRMLnet is based on a novel application of a multi-layer neural network and helps the controllers in their decisions. When compared to other machine learning models, our CRMLnet has achieved the best results with an accuracy of 98.72% and ROC of 0.999. The simulated data set that we have developed and used in our experiments will be delivered to the research community.
Abstract:The class distribution of data is one of the factors that regulates the performance of machine learning models. However, investigations on the impact of different distributions available in the literature are very few, sometimes absent for domain-specific tasks. In this paper, we analyze the impact of natural and balanced distributions of the training set in deep learning (DL) models applied on histological images, also known as whole slide images (WSIs). WSIs are considered as the gold standard for cancer diagnosis. In recent years, researchers have turned their attention to DL models to automate and accelerate the diagnosis process. In the training of such DL models, filtering out the non-regions-of-interest from the WSIs and adopting an artificial distribution (usually, a balanced distribution) is a common trend. In our analysis, we show that keeping the WSIs data in their usual distribution (which we call natural distribution) for DL training produces fewer false positives (FPs) with comparable false negatives (FNs) than the artificially-obtained balanced distribution. We conduct an empirical comparative study with 10 random folds for each distribution, comparing the resulting average performance levels in terms of five different evaluation metrics. Experimental results show the effectiveness of the natural distribution over the balanced one across all the evaluation metrics.
Abstract:The goal of query performance prediction (QPP) is to automatically estimate the effectiveness of a search result for any given query, without relevance judgements. Post-retrieval features have been shown to be more effective for this task while being more expensive to compute than pre-retrieval features. Combining multiple post-retrieval features is even more effective, but state-of-the-art QPP methods are impossible to interpret because of the black-box nature of the employed machine learning models. However, interpretation is useful for understanding the predictive model and providing more answers about its behavior. Moreover, combining many post-retrieval features is not applicable to real-world cases, since the query running time is of utter importance. In this paper, we investigate a new framework for feature selection in which the trained model explains well the prediction. We introduce a step-wise (forward and backward) model selection approach where different subsets of query features are used to fit different models from which the system selects the best one. We evaluate our approach on four TREC collections using standard QPP features. We also develop two QPP features to address the issue of query-drift in the query feedback setting. We found that: (1) our model based on a limited number of selected features is as good as more complex models for QPP and better than non-selective models; (2) our model is more efficient than complex models during inference time since it requires fewer features; (3) the predictive model is readable and understandable; and (4) one of our new QPP features is consistently selected across different collections, proving its usefulness.
Abstract:Feature selection in learning to rank has recently emerged as a crucial issue. Whereas several preprocessing approaches have been proposed, only a few works have been focused on integrating the feature selection into the learning process. In this work, we propose a general framework for feature selection in learning to rank using SVM with a sparse regularization term. We investigate both classical convex regularizations such as $\ell\_1$ or weighted $\ell\_1$ and non-convex regularization terms such as log penalty, Minimax Concave Penalty (MCP) or $\ell\_p$ pseudo norm with $p\textless{}1$. Two algorithms are proposed, first an accelerated proximal approach for solving the convex problems, second a reweighted $\ell\_1$ scheme to address the non-convex regularizations. We conduct intensive experiments on nine datasets from Letor 3.0 and Letor 4.0 corpora. Numerical results show that the use of non-convex regularizations we propose leads to more sparsity in the resulting models while prediction performance is preserved. The number of features is decreased by up to a factor of six compared to the $\ell\_1$ regularization. In addition, the software is publicly available on the web.