IRIT
Abstract:Query Performance Prediction (QPP) estimates retrieval systems effectiveness for a given query, offering valuable insights for search effectiveness and query processing. Despite extensive research, QPPs face critical challenges in generalizing across diverse retrieval paradigms and collections. This paper provides a comprehensive evaluation of state-of-the-art QPPs (e.g. NQC, UQC), LETOR-based features, and newly explored dense-based predictors. Using diverse sparse rankers (BM25, DFree without and with query expansion) and hybrid or dense (SPLADE and ColBert) rankers and diverse test collections ROBUST, GOV2, WT10G, and MS MARCO; we investigate the relationships between predicted and actual performance, with a focus on generalization and robustness. Results show significant variability in predictors accuracy, with collections as the main factor and rankers next. Some sparse predictors perform somehow on some collections (TREC ROBUST and GOV2) but do not generalise to other collections (WT10G and MS-MARCO). While some predictors show promise in specific scenarios, their overall limitations constrain their utility for applications. We show that QPP-driven selective query processing offers only marginal gains, emphasizing the need for improved predictors that generalize across collections, align with dense retrieval architectures and are useful for downstream applications.
Abstract:The rapid evolution of machine learning (ML) has led to the widespread adoption of complex "black box" models, such as deep neural networks and ensemble methods. These models exhibit exceptional predictive performance, making them invaluable for critical decision-making across diverse domains within society. However, their inherently opaque nature raises concerns about transparency and interpretability, making them untrustworthy decision support systems. To alleviate such a barrier to high-stakes adoption, research community focus has been on developing methods to explain black box models as a means to address the challenges they pose. Efforts are focused on explaining these models instead of developing ones that are inherently interpretable. Designing inherently interpretable models from the outset, however, can pave the path towards responsible and beneficial applications in the field of ML. In this position paper, we clarify the chasm between explaining black boxes and adopting inherently interpretable models. We emphasize the imperative need for model interpretability and, following the purpose of attaining better (i.e., more effective or efficient w.r.t. predictive performance) and trustworthy predictors, provide an experimental evaluation of latest hybrid learning methods that integrates symbolic knowledge into neural network predictors. We demonstrate how interpretable hybrid models could potentially supplant black box ones in different domains.
Abstract:D4R is a digital platform designed to assist non-technical users, particularly historians, in exploring textual documents through advanced graphical tools for text analysis and knowledge extraction. By leveraging a large language model, D4R translates natural language questions into Cypher queries, enabling the retrieval of data from a Neo4J database. A user-friendly graphical interface allows for intuitive interaction, enabling users to navigate and analyse complex relational data extracted from unstructured textual documents. Originally designed to bridge the gap between AI technologies and historical research, D4R's capabilities extend to various other domains. A demonstration video and a live software demo are available.
Abstract:This paper reports some difficulties and some results when using dense retrievers on Amharic, one of the low-resource languages spoken by 120 millions populations. The efforts put and difficulties faced by University Addis Ababa toward Amharic Information Retrieval will be developed during the presentation.
Abstract:Text-to-image generation has recently emerged as a viable alternative to text-to-image retrieval, due to the visually impressive results of generative diffusion models. Although query performance prediction is an active research topic in information retrieval, to the best of our knowledge, there is no prior study that analyzes the difficulty of queries (prompts) in text-to-image generation, based on human judgments. To this end, we introduce the first dataset of prompts which are manually annotated in terms of image generation performance. In order to determine the difficulty of the same prompts in image retrieval, we also collect manual annotations that represent retrieval performance. We thus propose the first benchmark for joint text-to-image prompt and query performance prediction, comprising 10K queries. Our benchmark enables: (i) the comparative assessment of the difficulty of prompts/queries in image generation and image retrieval, and (ii) the evaluation of prompt/query performance predictors addressing both generation and retrieval. We present results with several pre-generation/retrieval and post-generation/retrieval performance predictors, thus providing competitive baselines for future research. Our benchmark and code is publicly available under the CC BY 4.0 license at https://github.com/Eduard6421/PQPP.
Abstract:Semantic relations among entities are a widely accepted method for relation extraction. PromptORE (Prompt-based Open Relation Extraction) was designed to improve relation extraction with Large Language Models on generalistic documents. However, it is less effective when applied to historical documents, in languages other than English. In this study, we introduce an adaptation of PromptORE to extract relations from specialized documents, namely digital transcripts of trials from the Spanish Inquisition. Our approach involves fine-tuning transformer models with their pretraining objective on the data they will perform inference. We refer to this process as "biasing". Our Biased PromptORE addresses complex entity placements and genderism that occur in Spanish texts. We solve these issues by prompt engineering. We evaluate our method using Encoder-like models, corroborating our findings with experts' assessments. Additionally, we evaluate the performance using a binomial classification benchmark. Our results show a substantial improvement in accuracy -up to a 50% improvement with our Biased PromptORE models in comparison to the baseline models using standard PromptORE.
Abstract:Query processing in search engines can be optimized for use for all queries. For this, system component parameters such as the weighting function or the automatic query expansion model can be optimized or learned from past queries. However, it may be more interesting to optimize the processing thread on a query-by-query basis by adjusting the component parameters; this is what selective query processing does. Selective query processing uses one of the candidate processing threads chosen at query time. The choice is based on query features. In this paper, we examine selective query processing in different settings, both in terms of effectiveness and efficiency; this includes selective query expansion and other forms of selective query processing (e.g., when the term weighting function varies or when the expansion model varies). We found that the best trade-off between effectiveness and efficiency is obtained when using the best trained processing thread and its query expansion counter part. This seems to be also the most natural for a real-word engine since the two threads use the same core engine (e.g., same term weighting function).
Abstract:To date, query performance prediction (QPP) in the context of content-based image retrieval remains a largely unexplored task, especially in the query-by-example scenario, where the query is an image. To boost the exploration of the QPP task in image retrieval, we propose the first benchmark for image query performance prediction (iQPP). First, we establish a set of four data sets (PASCAL VOC 2012, Caltech-101, ROxford5k and RParis6k) and estimate the ground-truth difficulty of each query as the average precision or the precision@k, using two state-of-the-art image retrieval models. Next, we propose and evaluate novel pre-retrieval and post-retrieval query performance predictors, comparing them with existing or adapted (from text to image) predictors. The empirical results show that most predictors do not generalize across evaluation scenarios. Our comprehensive experiments indicate that iQPP is a challenging benchmark, revealing an important research gap that needs to be addressed in future work. We release our code and data as open source at https://github.com/Eduard6421/iQPP, to foster future research.
Abstract:An aircraft conflict occurs when two or more aircraft cross at a certain distance at the same time. Specific air traffic controllers are assigned to solve such conflicts. A controller needs to consider various types of information in order to solve a conflict. The most common and preliminary information is the coordinate position of the involved aircraft. Additionally, a controller has to take into account more information such as flight planning, weather, restricted territory, etc. The most important challenges a controller has to face are: to think about the issues involved and make a decision in a very short time. Due to the increased number of aircraft, it is crucial to reduce the workload of the controllers and help them make quick decisions. A conflict can be solved in many ways, therefore, we consider this problem as a multi-label classification problem. In doing so, we are proposing a multi-label classification model which provides multiple heading advisories for a given conflict. This model we named CRMLnet is based on a novel application of a multi-layer neural network and helps the controllers in their decisions. When compared to other machine learning models, our CRMLnet has achieved the best results with an accuracy of 98.72% and ROC of 0.999. The simulated data set that we have developed and used in our experiments will be delivered to the research community.
Abstract:The class distribution of data is one of the factors that regulates the performance of machine learning models. However, investigations on the impact of different distributions available in the literature are very few, sometimes absent for domain-specific tasks. In this paper, we analyze the impact of natural and balanced distributions of the training set in deep learning (DL) models applied on histological images, also known as whole slide images (WSIs). WSIs are considered as the gold standard for cancer diagnosis. In recent years, researchers have turned their attention to DL models to automate and accelerate the diagnosis process. In the training of such DL models, filtering out the non-regions-of-interest from the WSIs and adopting an artificial distribution (usually, a balanced distribution) is a common trend. In our analysis, we show that keeping the WSIs data in their usual distribution (which we call natural distribution) for DL training produces fewer false positives (FPs) with comparable false negatives (FNs) than the artificially-obtained balanced distribution. We conduct an empirical comparative study with 10 random folds for each distribution, comparing the resulting average performance levels in terms of five different evaluation metrics. Experimental results show the effectiveness of the natural distribution over the balanced one across all the evaluation metrics.