Abstract:Query Performance Prediction (QPP) estimates retrieval systems effectiveness for a given query, offering valuable insights for search effectiveness and query processing. Despite extensive research, QPPs face critical challenges in generalizing across diverse retrieval paradigms and collections. This paper provides a comprehensive evaluation of state-of-the-art QPPs (e.g. NQC, UQC), LETOR-based features, and newly explored dense-based predictors. Using diverse sparse rankers (BM25, DFree without and with query expansion) and hybrid or dense (SPLADE and ColBert) rankers and diverse test collections ROBUST, GOV2, WT10G, and MS MARCO; we investigate the relationships between predicted and actual performance, with a focus on generalization and robustness. Results show significant variability in predictors accuracy, with collections as the main factor and rankers next. Some sparse predictors perform somehow on some collections (TREC ROBUST and GOV2) but do not generalise to other collections (WT10G and MS-MARCO). While some predictors show promise in specific scenarios, their overall limitations constrain their utility for applications. We show that QPP-driven selective query processing offers only marginal gains, emphasizing the need for improved predictors that generalize across collections, align with dense retrieval architectures and are useful for downstream applications.
Abstract:D4R is a digital platform designed to assist non-technical users, particularly historians, in exploring textual documents through advanced graphical tools for text analysis and knowledge extraction. By leveraging a large language model, D4R translates natural language questions into Cypher queries, enabling the retrieval of data from a Neo4J database. A user-friendly graphical interface allows for intuitive interaction, enabling users to navigate and analyse complex relational data extracted from unstructured textual documents. Originally designed to bridge the gap between AI technologies and historical research, D4R's capabilities extend to various other domains. A demonstration video and a live software demo are available.
Abstract:Semantic relations among entities are a widely accepted method for relation extraction. PromptORE (Prompt-based Open Relation Extraction) was designed to improve relation extraction with Large Language Models on generalistic documents. However, it is less effective when applied to historical documents, in languages other than English. In this study, we introduce an adaptation of PromptORE to extract relations from specialized documents, namely digital transcripts of trials from the Spanish Inquisition. Our approach involves fine-tuning transformer models with their pretraining objective on the data they will perform inference. We refer to this process as "biasing". Our Biased PromptORE addresses complex entity placements and genderism that occur in Spanish texts. We solve these issues by prompt engineering. We evaluate our method using Encoder-like models, corroborating our findings with experts' assessments. Additionally, we evaluate the performance using a binomial classification benchmark. Our results show a substantial improvement in accuracy -up to a 50% improvement with our Biased PromptORE models in comparison to the baseline models using standard PromptORE.