Abstract:Considerable progress has been made in the recent literature studies to tackle the Algorithms Selection and Parametrization (ASP) problem, which is diversified in multiple meta-learning setups. Yet there is a lack of surveys and comparative evaluations that critically analyze, summarize and assess the performance of existing methods. In this paper, we provide an overview of the state of the art in this continuously evolving field. The survey sheds light on the motivational reasons for pursuing classifiers selection through meta-learning. In this regard, Automated Machine Learning (AutoML) is usually treated as an ASP problem under the umbrella of the democratization of machine learning. Accordingly, AutoML makes machine learning techniques accessible to domain scientists who are interested in applying advanced analytics but lack the required expertise. It can ease the task of manually selecting ML algorithms and tuning related hyperparameters. We comprehensively discuss the different phases of classifiers selection based on a generic framework that is formed as an outcome of reviewing prior works. Subsequently, we propose a benchmark knowledge base of 4 millions previously learned models and present extensive comparative evaluations of the prominent methods for classifiers selection based on 08 classification algorithms and 400 benchmark datasets. The comparative study quantitatively assesses the performance of algorithms selection methods along while emphasizing the strengths and limitations of existing studies.
Abstract:Query Performance Prediction (QPP) estimates retrieval systems effectiveness for a given query, offering valuable insights for search effectiveness and query processing. Despite extensive research, QPPs face critical challenges in generalizing across diverse retrieval paradigms and collections. This paper provides a comprehensive evaluation of state-of-the-art QPPs (e.g. NQC, UQC), LETOR-based features, and newly explored dense-based predictors. Using diverse sparse rankers (BM25, DFree without and with query expansion) and hybrid or dense (SPLADE and ColBert) rankers and diverse test collections ROBUST, GOV2, WT10G, and MS MARCO; we investigate the relationships between predicted and actual performance, with a focus on generalization and robustness. Results show significant variability in predictors accuracy, with collections as the main factor and rankers next. Some sparse predictors perform somehow on some collections (TREC ROBUST and GOV2) but do not generalise to other collections (WT10G and MS-MARCO). While some predictors show promise in specific scenarios, their overall limitations constrain their utility for applications. We show that QPP-driven selective query processing offers only marginal gains, emphasizing the need for improved predictors that generalize across collections, align with dense retrieval architectures and are useful for downstream applications.
Abstract:The rapid evolution of machine learning (ML) has led to the widespread adoption of complex "black box" models, such as deep neural networks and ensemble methods. These models exhibit exceptional predictive performance, making them invaluable for critical decision-making across diverse domains within society. However, their inherently opaque nature raises concerns about transparency and interpretability, making them untrustworthy decision support systems. To alleviate such a barrier to high-stakes adoption, research community focus has been on developing methods to explain black box models as a means to address the challenges they pose. Efforts are focused on explaining these models instead of developing ones that are inherently interpretable. Designing inherently interpretable models from the outset, however, can pave the path towards responsible and beneficial applications in the field of ML. In this position paper, we clarify the chasm between explaining black boxes and adopting inherently interpretable models. We emphasize the imperative need for model interpretability and, following the purpose of attaining better (i.e., more effective or efficient w.r.t. predictive performance) and trustworthy predictors, provide an experimental evaluation of latest hybrid learning methods that integrates symbolic knowledge into neural network predictors. We demonstrate how interpretable hybrid models could potentially supplant black box ones in different domains.
Abstract:The rise of artificial intelligence and data science across industries underscores the pressing need for effective management and governance of machine learning (ML) models. Traditional approaches to ML models management often involve disparate storage systems and lack standardized methodologies for versioning, audit, and re-use. Inspired by data lake concepts, this paper develops the concept of ML Model Lake as a centralized management framework for datasets, codes, and models within organizations environments. We provide an in-depth exploration of the Model Lake concept, delineating its architectural foundations, key components, operational benefits, and practical challenges. We discuss the transformative potential of adopting a Model Lake approach, such as enhanced model lifecycle management, discovery, audit, and reusability. Furthermore, we illustrate a real-world application of Model Lake and its transformative impact on data, code and model management practices.
Abstract:This paper reports some difficulties and some results when using dense retrievers on Amharic, one of the low-resource languages spoken by 120 millions populations. The efforts put and difficulties faced by University Addis Ababa toward Amharic Information Retrieval will be developed during the presentation.