Abstract:Anomaly detection in complex industrial environments poses unique challenges, particularly in contexts characterized by data sparsity and evolving operational conditions. Predictive maintenance (PdM) in such settings demands methodologies that are adaptive, transferable, and capable of integrating domain-specific knowledge. In this paper, we present RAAD-LLM, a novel framework for adaptive anomaly detection, leveraging large language models (LLMs) integrated with Retrieval-Augmented Generation (RAG). This approach addresses the aforementioned PdM challenges. By effectively utilizing domain-specific knowledge, RAAD-LLM enhances the detection of anomalies in time series data without requiring fine-tuning on specific datasets. The framework's adaptability mechanism enables it to adjust its understanding of normal operating conditions dynamically, thus increasing detection accuracy. We validate this methodology through a real-world application for a plastics manufacturing plant and the Skoltech Anomaly Benchmark (SKAB). Results show significant improvements over our previous model with an accuracy increase from 70.7 to 89.1 on the real-world dataset. By allowing for the enriching of input series data with semantics, RAAD-LLM incorporates multimodal capabilities that facilitate more collaborative decision-making between the model and plant operators. Overall, our findings support RAAD-LLM's ability to revolutionize anomaly detection methodologies in PdM, potentially leading to a paradigm shift in how anomaly detection is implemented across various industries.
Abstract:Predictive maintenance is a well studied collection of techniques that aims to prolong the life of a mechanical system by using artificial intelligence and machine learning to predict the optimal time to perform maintenance. The methods allow maintainers of systems and hardware to reduce financial and time costs of upkeep. As these methods are adopted for more serious and potentially life-threatening applications, the human operators need trust the predictive system. This attracts the field of Explainable AI (XAI) to introduce explainability and interpretability into the predictive system. XAI brings methods to the field of predictive maintenance that can amplify trust in the users while maintaining well-performing systems. This survey on explainable predictive maintenance (XPM) discusses and presents the current methods of XAI as applied to predictive maintenance while following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. We categorize the different XPM methods into groups that follow the XAI literature. Additionally, we include current challenges and a discussion on future research directions in XPM.