Digital Signal Processing Research Laboratory, Federal University of Santa Catarina, Santa Catarina, Brazil
Abstract:Access to data and data processing, including the use of machine learning techniques, has become significantly easier and cheaper in recent years. Nevertheless, solutions that can be widely adopted by regulators for market monitoring and inspection targeting in a data-driven way have not been frequently discussed by the scientific community. This article discusses the need and the difficulties for the development of such solutions, presents an effective method to address regulation planning, and illustrates its use to account for the most important and common subject for the majority of regulators: the consumer. This article hopes to contribute to increase the awareness of the regulatory community to the need for data processing methods that are objective, impartial, transparent, explainable, simple to implement and with low computational cost, aiming to the implementation of risk-based regulation in the world.
Abstract:The Epithelial Dysplasia (ED) is a tissue alteration commonly present in lesions preceding oral cancer, being its presence one of the most important factors in the progression toward carcinoma. This study proposes a method to design a low computational cost classification system to support the detection of dysplastic epithelia, contributing to reduce the variability of pathologist assessments. We employ a multilayer artificial neural network (MLP-ANN) and defining the regions of the epithelium to be assessed based on the knowledge of the pathologist. The performance of the proposed solution was statistically evaluated. The implemented MLP-ANN presented an average accuracy of 87%, with a variability much inferior to that obtained from three trained evaluators. Moreover, the proposed solution led to results which are very close to those obtained using a convolutional neural network (CNN) implemented by transfer learning, with 100 times less computational complexity. In conclusion, our results show that a simple neural network structure can lead to a performance equivalent to that of much more complex structures, which are routinely used in the literature.
Abstract:Electrical Impedance Tomography (EIT) systems are becoming popular because they present several advantages over competing systems. However, EIT leads to images with very low resolution. Moreover, the nonuniform sampling characteristic of EIT precludes the straightforward application of traditional image ruper-resolution techniques. In this work, we propose a resampling based Super-Resolution method for EIT image quality improvement. Preliminary results show that the proposed technique can lead to substantial improvements in EIT image resolution, making it more competitive with other technologies.
Abstract:When considering the problem of unmixing hyperspectral images, most of the literature in the geoscience and image processing areas relies on the widely used linear mixing model (LMM). However, the LMM may be not valid and other nonlinear models need to be considered, for instance, when there are multi-scattering effects or intimate interactions. Consequently, over the last few years, several significant contributions have been proposed to overcome the limitations inherent in the LMM. In this paper, we present an overview of recent advances in nonlinear unmixing modeling.