Abstract:Every day, thousands of digital documents are generated with useful information for companies, public organizations, and citizens. Given the impossibility of processing them manually, the automatic processing of these documents is becoming increasingly necessary in certain sectors. However, this task remains challenging, since in most cases a text-only based parsing is not enough to fully understand the information presented through different components of varying significance. In this regard, Document Layout Analysis (DLA) has been an interesting research field for many years, which aims to detect and classify the basic components of a document. In this work, we used a procedure to semi-automatically annotate digital documents with different layout labels, including 4 basic layout blocks and 4 text categories. We apply this procedure to collect a novel database for DLA in the public affairs domain, using a set of 24 data sources from the Spanish Administration. The database comprises 37.9K documents with more than 441K document pages, and more than 8M labels associated to 8 layout block units. The results of our experiments validate the proposed text labeling procedure with accuracy up to 99%.
Abstract:The analysis of public affairs documents is crucial for citizens as it promotes transparency, accountability, and informed decision-making. It allows citizens to understand government policies, participate in public discourse, and hold representatives accountable. This is crucial, and sometimes a matter of life or death, for companies whose operation depend on certain regulations. Large Language Models (LLMs) have the potential to greatly enhance the analysis of public affairs documents by effectively processing and understanding the complex language used in such documents. In this work, we analyze the performance of LLMs in classifying public affairs documents. As a natural multi-label task, the classification of these documents presents important challenges. In this work, we use a regex-powered tool to collect a database of public affairs documents with more than 33K samples and 22.5M tokens. Our experiments assess the performance of 4 different Spanish LLMs to classify up to 30 different topics in the data in different configurations. The results shows that LLMs can be of great use to process domain-specific documents, such as those in the domain of public affairs.