Abstract:This paper addresses the challenge of estimating high-dimensional parameters in non-standard data environments, where traditional methods often falter due to issues such as heavy-tailed distributions, data contamination, and dependent observations. We propose robust subsampling techniques, specifically Adaptive Importance Sampling (AIS) and Stratified Subsampling, designed to enhance the reliability and efficiency of parameter estimation. Under some clearly outlined conditions, we establish consistency and asymptotic normality for the proposed estimators, providing non-asymptotic error bounds that quantify their performance. Our theoretical foundations are complemented by controlled experiments demonstrating the superiority of our methods over conventional approaches. By bridging the gap between theory and practice, this work offers significant contributions to robust statistical estimation, paving the way for advancements in various applied domains.
Abstract:Medical imaging analysis has witnessed remarkable advancements even surpassing human-level performance in recent years, driven by the rapid development of advanced deep-learning algorithms. However, when the inference dataset slightly differs from what the model has seen during one-time training, the model performance is greatly compromised. The situation requires restarting the training process using both the old and the new data which is computationally costly, does not align with the human learning process, and imposes storage constraints and privacy concerns. Alternatively, continual learning has emerged as a crucial approach for developing unified and sustainable deep models to deal with new classes, tasks, and the drifting nature of data in non-stationary environments for various application areas. Continual learning techniques enable models to adapt and accumulate knowledge over time, which is essential for maintaining performance on evolving datasets and novel tasks. This systematic review paper provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical imaging analysis. We present an extensive survey of existing research, covering topics including catastrophic forgetting, data drifts, stability, and plasticity requirements. Further, an in-depth discussion of key components of a continual learning framework such as continual learning scenarios, techniques, evaluation schemes, and metrics is provided. Continual learning techniques encompass various categories, including rehearsal, regularization, architectural, and hybrid strategies. We assess the popularity and applicability of continual learning categories in various medical sub-fields like radiology and histopathology...
Abstract:Food classification is an important task in health care. In this work, we propose a multimodal classification framework that uses the modified version of EfficientNet with the Mish activation function for image classification, and the traditional BERT transformer-based network is used for text classification. The proposed network and the other state-of-the-art methods are evaluated on a large open-source dataset, UPMC Food-101. The experimental results show that the proposed network outperforms the other methods, a significant difference of 11.57% and 6.34% in accuracy is observed for image and text classification, respectively, when compared with the second-best performing method. We also compared the performance in terms of accuracy, precision, and recall for text classification using both machine learning and deep learning-based models. The comparative analysis from the prediction results of both images and text demonstrated the efficiency and robustness of the proposed approach.