Abstract:Galaxy clusters identified from the Sunyaev Zel'dovich (SZ) effect are a key ingredient in multi-wavelength cluster-based cosmology. We present a comparison between two methods of cluster identification: the standard Matched Filter (MF) method in SZ cluster finding and a method using Convolutional Neural Networks (CNN). We further implement and show results for a `combined' identifier. We apply the methods to simulated millimeter maps for several observing frequencies for an SPT-3G-like survey. There are some key differences between the methods. The MF method requires image pre-processing to remove point sources and a model for the noise, while the CNN method requires very little pre-processing of images. Additionally, the CNN requires tuning of hyperparameters in the model and takes as input, cutout images of the sky. Specifically, we use the CNN to classify whether or not an 8 arcmin $\times$ 8 arcmin cutout of the sky contains a cluster. We compare differences in purity and completeness. The MF signal-to-noise ratio depends on both mass and redshift. Our CNN, trained for a given mass threshold, captures a different set of clusters than the MF, some of which have SNR below the MF detection threshold. However, the CNN tends to mis-classify cutouts whose clusters are located near the edge of the cutout, which can be mitigated with staggered cutouts. We leverage the complementarity of the two methods, combining the scores from each method for identification. The purity and completeness of the MF alone are both 0.61, assuming a standard detection threshold. The purity and completeness of the CNN alone are 0.59 and 0.61. The combined classification method yields 0.60 and 0.77, a significant increase for completeness with a modest decrease in purity. We advocate for combined methods that increase the confidence of many lower signal-to-noise clusters.
Abstract:We present a comparison of methods for uncertainty quantification (UQ) in deep learning algorithms in the context of a simple physical system. Three of the most common uncertainty quantification methods - Bayesian Neural Networks (BNN), Concrete Dropout (CD), and Deep Ensembles (DE) - are compared to the standard analytic error propagation. We discuss this comparison in terms endemic to both machine learning ("epistemic" and "aleatoric") and the physical sciences ("statistical" and "systematic"). The comparisons are presented in terms of simulated experimental measurements of a single pendulum - a prototypical physical system for studying measurement and analysis techniques. Our results highlight some pitfalls that may occur when using these UQ methods. For example, when the variation of noise in the training set is small, all methods predicted the same relative uncertainty independently of the inputs. This issue is particularly hard to avoid in BNN. On the other hand, when the test set contains samples far from the training distribution, we found that no methods sufficiently increased the uncertainties associated to their predictions. This problem was particularly clear for CD. In light of these results, we make some recommendations for usage and interpretation of UQ methods.
Abstract:We present the application of Restricted Boltzmann Machines (RBMs) to the task of astronomical image classification using a quantum annealer built by D-Wave Systems. Morphological analysis of galaxies provides critical information for studying their formation and evolution across cosmic time scales. We compress the images using principal component analysis to fit a representation on the quantum hardware. Then, we train RBMs with discriminative and generative algorithms, including contrastive divergence and hybrid generative-discriminative approaches. We compare these methods to Quantum Annealing (QA), Markov Chain Monte Carlo (MCMC) Gibbs Sampling, Simulated Annealing (SA) as well as machine learning algorithms like gradient boosted decision trees. We find that RBMs implemented on D-wave hardware perform well, and that they show some classification performance advantages on small datasets, but they don't offer a broadly strategic advantage for this task. During this exploration, we analyzed the steps required for Boltzmann sampling with the D-Wave 2000Q, including a study of temperature estimation, and examined the impact of qubit noise by comparing and contrasting the original D-Wave 2000Q to the lower-noise version recently made available. While these analyses ultimately had minimal impact on the performance of the RBMs, we include them for reference.
Abstract:The field of astronomy has arrived at a turning point in terms of size and complexity of both datasets and scientific collaboration. Commensurately, algorithms and statistical models have begun to adapt --- e.g., via the onset of artificial intelligence --- which itself presents new challenges and opportunities for growth. This white paper aims to offer guidance and ideas for how we can evolve our technical and collaborative frameworks to promote efficient algorithmic development and take advantage of opportunities for scientific discovery in the petabyte era. We discuss challenges for discovery in large and complex data sets; challenges and requirements for the next stage of development of statistical methodologies and algorithmic tool sets; how we might change our paradigms of collaboration and education; and the ethical implications of scientists' contributions to widely applicable algorithms and computational modeling. We start with six distinct recommendations that are supported by the commentary following them. This white paper is related to a larger corpus of effort that has taken place within and around the Petabytes to Science Workshops (https://petabytestoscience.github.io/).
Abstract:This project presents the results of a partnership between the Data Science for Social Good fellowship, Jakarta Smart City and Pulse Lab Jakarta to create a video analysis pipeline for the purpose of improving traffic safety in Jakarta. The pipeline transforms raw traffic video footage into databases that are ready to be used for traffic analysis. By analyzing these patterns, the city of Jakarta will better understand how human behavior and built infrastructure contribute to traffic challenges and safety risks. The results of this work should also be broadly applicable to smart city initiatives around the globe as they improve urban planning and sustainability through data science approaches.