Abstract:Masked generative models (MGMs) have shown impressive generative ability while providing an order of magnitude efficient sampling steps compared to continuous diffusion models. However, MGMs still underperform in image synthesis compared to recent well-developed continuous diffusion models with similar size in terms of quality and diversity of generated samples. A key factor in the performance of continuous diffusion models stems from the guidance methods, which enhance the sample quality at the expense of diversity. In this paper, we extend these guidance methods to generalized guidance formulation for MGMs and propose a self-guidance sampling method, which leads to better generation quality. The proposed approach leverages an auxiliary task for semantic smoothing in vector-quantized token space, analogous to the Gaussian blur in continuous pixel space. Equipped with the parameter-efficient fine-tuning method and high-temperature sampling, MGMs with the proposed self-guidance achieve a superior quality-diversity trade-off, outperforming existing sampling methods in MGMs with more efficient training and sampling costs. Extensive experiments with the various sampling hyperparameters confirm the effectiveness of the proposed self-guidance.
Abstract:Training diffusion models on limited datasets poses challenges in terms of limited generation capacity and expressiveness, leading to unsatisfactory results in various downstream tasks utilizing pretrained diffusion models, such as domain translation and text-guided image manipulation. In this paper, we propose Self-Distillation for Fine-Tuning diffusion models (SDFT), a methodology to address these challenges by leveraging diverse features from diffusion models pretrained on large source datasets. SDFT distills more general features (shape, colors, etc.) and less domain-specific features (texture, fine details, etc) from the source model, allowing successful knowledge transfer without disturbing the training process on target datasets. The proposed method is not constrained by the specific architecture of the model and thus can be generally adopted to existing frameworks. Experimental results demonstrate that SDFT enhances the expressiveness of the diffusion model with limited datasets, resulting in improved generation capabilities across various downstream tasks.
Abstract:Steganography is the process of embedding secret data into another message or data, in such a way that it is not easily noticeable. With the advancement of deep learning, Deep Neural Networks (DNNs) have recently been utilized in steganography. However, existing deep steganography techniques are limited in scope, as they focus on specific data types and are not effective for cross-modal steganography. Therefore, We propose a deep cross-modal steganography framework using Implicit Neural Representations (INRs) to hide secret data of various formats in cover images. The proposed framework employs INRs to represent the secret data, which can handle data of various modalities and resolutions. Experiments on various secret datasets of diverse types demonstrate that the proposed approach is expandable and capable of accommodating different modalities.
Abstract:Light field (LF) camera captures rich information from a scene. Using the information, the LF de-occlusion (LF-DeOcc) task aims to reconstruct the occlusion-free center view image. Existing LF-DeOcc studies mainly focus on the sparsely sampled (sparse) LF images where most of the occluded regions are visible in other views due to the large disparity. In this paper, we expand LF-DeOcc in more challenging datasets, densely sampled (dense) LF images, which are taken by a micro-lens-based portable LF camera. Due to the small disparity ranges of dense LF images, most of the background regions are invisible in any view. To apply LF-DeOcc in both LF datasets, we propose a framework, ISTY, which is defined and divided into three roles: (1) extract LF features, (2) define the occlusion, and (3) inpaint occluded regions. By dividing the framework into three specialized components according to the roles, the development and analysis can be easier. Furthermore, an explainable intermediate representation, an occlusion mask, can be obtained in the proposed framework. The occlusion mask is useful for comprehensive analysis of the model and other applications by manipulating the mask. In experiments, qualitative and quantitative results show that the proposed framework outperforms state-of-the-art LF-DeOcc methods in both sparse and dense LF datasets.