Abstract:The logical analysis of data, LAD, is a technique that yields two-class classifiers based on Boolean functions having disjunctive normal form (DNF) representation. Although LAD algorithms employ optimization techniques, the resulting binary classifiers or binary rules do not lead to overfitting. We propose a theoretical justification for the absence of overfitting by estimating the Vapnik-Chervonenkis dimension (VC dimension) for LAD models where hypothesis sets consist of DNFs with a small number of cubic monomials. We illustrate and confirm our observations empirically.
Abstract:Sanskrit is a low-resource language with a rich heritage. Digitized Sanskrit corpora reflective of the contemporary usage of Sanskrit, specifically that too in prose, is heavily under-represented at present. Presently, no such English-Sanskrit parallel dataset is publicly available. We release a dataset, S\={a}mayik, of more than 42,000 parallel English-Sanskrit sentences, from four different corpora that aim to bridge this gap. Moreover, we also release benchmarks adapted from existing multilingual pretrained models for Sanskrit-English translation. We include training splits from our contemporary dataset and the Sanskrit-English parallel sentences from the training split of Itih\={a}sa, a previously released classical era machine translation dataset containing Sanskrit.