Abstract:Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, particularly when using memory-intensive optimizers like Adam. Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing. While these approaches help alleviate memory constraints, they generally produce suboptimal results compared to full-rank updates. In this paper, we investigate the memory-efficient method beyond low-rank training, proposing a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements for maintaining optimizer states. We demonstrate that GWT can be seamlessly integrated with memory-intensive optimizers, enabling efficient training without sacrificing performance. Through extensive experiments on both pre-training and fine-tuning tasks, we show that GWT achieves state-of-the-art performance compared with advanced memory-efficient optimizers and full-rank approaches in terms of both memory usage and training performance.
Abstract:Sharpness-Aware Minimization (SAM) has proven highly effective in improving model generalization in machine learning tasks. However, SAM employs a fixed hyperparameter associated with the regularization to characterize the sharpness of the model. Despite its success, research on adaptive regularization methods based on SAM remains scarce. In this paper, we propose the SAM with Adaptive Regularization (SAMAR), which introduces a flexible sharpness ratio rule to update the regularization parameter dynamically. We provide theoretical proof of the convergence of SAMAR for functions satisfying the Lipschitz continuity. Additionally, experiments on image recognition tasks using CIFAR-10 and CIFAR-100 demonstrate that SAMAR enhances accuracy and model generalization.