Abstract:LLMs have traditionally scaled along dense dimensions, where performance is coupled with near-linear increases in computational cost. While MoE decouples capacity from compute, it introduces large memory overhead and hardware efficiency challenges. To overcome these, we propose token-indexed parameters as a novel, orthogonal scaling axis that decouple model capacity from FLOPs. Specifically, we introduce Joint-Token (JTok) and Mixture of Joint-Token (JTok-M), which augment Transformer layers with modulation vectors retrieved from auxiliary embedding tables. These vectors modulate the backbone via lightweight, element-wise operations, incurring negligible FLOPs overhead. Extensive experiments on both dense and MoE backbones, spanning from 650M (190M + 460M embedding) to 61B (17B + 44B embedding) total parameters, demonstrate that our approach consistently reduces validation loss and significantly improves downstream task performance (e.g., +4.1 on MMLU, +8.3 on ARC, +8.9 on CEval). Rigorous isoFLOPs analysis further confirms that JTok-M fundamentally shifts the quality-compute Pareto frontier, achieving comparable model quality with 35% less compute relative to vanilla MoE architectures, and we validate that token-indexed parameters exhibit a predictable power-law scaling behavior. Moreover, our efficient implementation ensures that the overhead introduced by JTok and JTok-M remains marginal.




Abstract:Protolanguage reconstruction is central to historical linguistics. The comparative method, one of the most influential theoretical and methodological frameworks in the history of the language sciences, allows linguists to infer protoforms (reconstructed ancestral words) from their reflexes (related modern words) based on the assumption of regular sound change. Not surprisingly, numerous computational linguists have attempted to operationalize comparative reconstruction through various computational models, the most successful of which have been supervised encoder-decoder models, which treat the problem of predicting protoforms given sets of reflexes as a sequence-to-sequence problem. We argue that this framework ignores one of the most important aspects of the comparative method: not only should protoforms be inferable from cognate sets (sets of related reflexes) but the reflexes should also be inferable from the protoforms. Leveraging another line of research -- reflex prediction -- we propose a system in which candidate protoforms from a reconstruction model are reranked by a reflex prediction model. We show that this more complete implementation of the comparative method allows us to surpass state-of-the-art protoform reconstruction methods on three of four Chinese and Romance datasets.