Abstract:Modern diffusion-based image generative models have made significant progress and become promising to enrich training data for the object detection task. However, the generation quality and the controllability for complex scenes containing multi-class objects and dense objects with occlusions remain limited. This paper presents ODGEN, a novel method to generate high-quality images conditioned on bounding boxes, thereby facilitating data synthesis for object detection. Given a domain-specific object detection dataset, we first fine-tune a pre-trained diffusion model on both cropped foreground objects and entire images to fit target distributions. Then we propose to control the diffusion model using synthesized visual prompts with spatial constraints and object-wise textual descriptions. ODGEN exhibits robustness in handling complex scenes and specific domains. Further, we design a dataset synthesis pipeline to evaluate ODGEN on 7 domain-specific benchmarks to demonstrate its effectiveness. Adding training data generated by ODGEN improves up to 25.3% mAP@.50:.95 with object detectors like YOLOv5 and YOLOv7, outperforming prior controllable generative methods. In addition, we design an evaluation protocol based on COCO-2014 to validate ODGEN in general domains and observe an advantage up to 5.6% in mAP@.50:.95 against existing methods.
Abstract:Large-scale text-to-image diffusion models have achieved great success in synthesizing high-quality and diverse images given target text prompts. Despite the revolutionary image generation ability, current state-of-the-art models still struggle to deal with multi-concept generation accurately in many cases. This phenomenon is known as ``concept bleeding" and displays as the unexpected overlapping or merging of various concepts. This paper presents a general approach for text-to-image diffusion models to address the mutual interference between different subjects and their attachments in complex scenes, pursuing better text-image consistency. The core idea is to isolate the synthesizing processes of different concepts. We propose to bind each attachment to corresponding subjects separately with split text prompts. Besides, we introduce a revision method to fix the concept bleeding problem in multi-subject synthesis. We first depend on pre-trained object detection and segmentation models to obtain the layouts of subjects. Then we isolate and resynthesize each subject individually with corresponding text prompts to avoid mutual interference. Overall, we achieve a training-free strategy, named Isolated Diffusion, to optimize multi-concept text-to-image synthesis. It is compatible with the latest Stable Diffusion XL (SDXL) and prior Stable Diffusion (SD) models. We compare our approach with alternative methods using a variety of multi-concept text prompts and demonstrate its effectiveness with clear advantages in text-image consistency and user study.
Abstract:Denoising diffusion probabilistic models (DDPMs) have been proven capable of synthesizing high-quality images with remarkable diversity when trained on large amounts of data. Typical diffusion models and modern large-scale conditional generative models like text-to-image generative models are vulnerable to overfitting when fine-tuned on extremely limited data. Existing works have explored subject-driven generation using a reference set containing a few images. However, few prior works explore DDPM-based domain-driven generation, which aims to learn the common features of target domains while maintaining diversity. This paper proposes a novel DomainStudio approach to adapt DDPMs pre-trained on large-scale source datasets to target domains using limited data. It is designed to keep the diversity of subjects provided by source domains and get high-quality and diverse adapted samples in target domains. We propose to keep the relative distances between adapted samples to achieve considerable generation diversity. In addition, we further enhance the learning of high-frequency details for better generation quality. Our approach is compatible with both unconditional and conditional diffusion models. This work makes the first attempt to realize unconditional few-shot image generation with diffusion models, achieving better quality and greater diversity than current state-of-the-art GAN-based approaches. Moreover, this work also significantly relieves overfitting for conditional generation and realizes high-quality domain-driven generation, further expanding the applicable scenarios of modern large-scale text-to-image models.
Abstract:Realistic and diverse 3D shape generation is helpful for a wide variety of applications such as virtual reality, gaming, and animation. Modern generative models, such as GANs and diffusion models, learn from large-scale datasets and generate new samples following similar data distributions. However, when training data is limited, deep neural generative networks overfit and tend to replicate training samples. Prior works focus on few-shot image generation to produce high-quality and diverse results using a few target images. Unfortunately, abundant 3D shape data is typically hard to obtain as well. In this work, we make the first attempt to realize few-shot 3D shape generation by adapting generative models pre-trained on large source domains to target domains using limited data. To relieve overfitting and keep considerable diversity, we propose to maintain the probability distributions of the pairwise relative distances between adapted samples at feature-level and shape-level during domain adaptation. Our approach only needs the silhouettes of few-shot target samples as training data to learn target geometry distributions and achieve generated shapes with diverse topology and textures. Moreover, we introduce several metrics to evaluate the quality and diversity of few-shot 3D shape generation. The effectiveness of our approach is demonstrated qualitatively and quantitatively under a series of few-shot 3D shape adaptation setups.
Abstract:Video generation has achieved rapid progress benefiting from high-quality renderings provided by powerful image generators. We regard the video synthesis task as generating a sequence of images sharing the same contents but varying in motions. However, most previous video synthesis frameworks based on pre-trained image generators treat content and motion generation separately, leading to unrealistic generated videos. Therefore, we design a novel framework to build the motion space, aiming to achieve content consistency and fast convergence for video generation. We present MotionVideoGAN, a novel video generator synthesizing videos based on the motion space learned by pre-trained image pair generators. Firstly, we propose an image pair generator named MotionStyleGAN to generate image pairs sharing the same contents and producing various motions. Then we manage to acquire motion codes to edit one image in the generated image pairs and keep the other unchanged. The motion codes help us edit images within the motion space since the edited image shares the same contents with the other unchanged one in image pairs. Finally, we introduce a latent code generator to produce latent code sequences using motion codes for video generation. Our approach achieves state-of-the-art performance on the most complex video dataset ever used for unconditional video generation evaluation, UCF101.
Abstract:Denoising diffusion probabilistic models (DDPMs) have been proven capable of synthesizing high-quality images with remarkable diversity when trained on large amounts of data. However, to our knowledge, few-shot image generation tasks have yet to be studied with DDPM-based approaches. Modern approaches are mainly built on Generative Adversarial Networks (GANs) and adapt models pre-trained on large source domains to target domains using a few available samples. In this paper, we make the first attempt to study when do DDPMs overfit and suffer severe diversity degradation as training data become scarce. Then we fine-tune DDPMs pre-trained on large source domains on limited target data directly. Our results show that utilizing knowledge from pre-trained models can accelerate convergence and improve generation quality and diversity compared with training from scratch. However, the fine-tuned models still fail to retain some diverse features and can only achieve limited diversity. Therefore, we propose a pairwise DDPM adaptation (DDPM-PA) approach based on a pairwise similarity loss to preserve the relative distances between generated samples during domain adaptation. DDPM-PA further improves generation diversity and achieves results better than current state-of-the-art GAN-based approaches. We demonstrate the effectiveness of DDPM-PA on a series of few-shot image generation tasks qualitatively and quantitatively.
Abstract:Few-shot image generation aims to generate images of high quality and great diversity with limited data. However, it is difficult for modern GANs to avoid overfitting when trained on only a few images. The discriminator can easily remember all the training samples and guide the generator to replicate them, leading to severe diversity degradation. Several methods have been proposed to relieve overfitting by adapting GANs pre-trained on large source domains to target domains with limited real samples. In this work, we present a novel approach to realize few-shot GAN adaptation via masked discrimination. Random masks are applied to features extracted by the discriminator from input images. We aim to encourage the discriminator to judge more diverse images which share partially common features with training samples as realistic images. Correspondingly, the generator is guided to generate more diverse images instead of replicating training samples. In addition, we employ cross-domain consistency loss for the discriminator to keep relative distances between samples in its feature space. The discriminator cross-domain consistency loss serves as another optimization target in addition to adversarial loss and guides adapted GANs to preserve more information learned from source domains for higher image quality. The effectiveness of our approach is demonstrated both qualitatively and quantitatively with higher quality and greater diversity on a series of few-shot image generation tasks than prior methods.