Abstract:Multi-level sentence simplification generates simplified sentences with varying language proficiency levels. We propose Label Confidence Weighted Learning (LCWL), a novel approach that incorporates a label confidence weighting scheme in the training loss of the encoder-decoder model, setting it apart from existing confidence-weighting methods primarily designed for classification. Experimentation on English grade-level simplification dataset shows that LCWL outperforms state-of-the-art unsupervised baselines. Fine-tuning the LCWL model on in-domain data and combining with Symmetric Cross Entropy (SCE) consistently delivers better simplifications compared to strong supervised methods. Our results highlight the effectiveness of label confidence weighting techniques for text simplification tasks with encoder-decoder architectures.
Abstract:This system report presents our approaches and results for the Chinese Essay Fluency Evaluation (CEFE) task at CCL-2024. For Track 1, we optimized predictions for challenging fine-grained error types using binary classification models and trained coarse-grained models on the Chinese Learner 4W corpus. In Track 2, we enhanced performance by constructing a pseudo-dataset with multiple error types per sentence. For Track 3, where we achieved first place, we generated fluency-rated pseudo-data via back-translation for pre-training and used an NSP-based strategy with Symmetric Cross Entropy loss to capture context and mitigate long dependencies. Our methods effectively address key challenges in Chinese Essay Fluency Evaluation.
Abstract:Cross-lingual word alignment plays a crucial role in various natural language processing tasks, particularly for low-resource languages. Recent study proposes a BiLSTM-based encoder-decoder model that outperforms pre-trained language models in low-resource settings. However, their model only considers the similarity of word embedding spaces and does not explicitly model the differences between word embeddings. To address this limitation, we propose incorporating contrastive learning into the BiLSTM-based encoder-decoder framework. Our approach introduces a multi-view negative sampling strategy to learn the differences between word pairs in the shared cross-lingual embedding space. We evaluate our model on five bilingual aligned datasets spanning four ASEAN languages: Lao, Vietnamese, Thai, and Indonesian. Experimental results demonstrate that integrating contrastive learning consistently improves word alignment accuracy across all datasets, confirming the effectiveness of the proposed method in low-resource scenarios. We will release our data set and code to support future research on ASEAN or more low-resource word alignment.
Abstract:Chinese sentence simplification faces challenges due to the lack of large-scale labeled parallel corpora and the prevalence of idioms. To address these challenges, we propose Readability-guided Idiom-aware Sentence Simplification (RISS), a novel framework that combines data augmentation techniques with lexcial simplification. RISS introduces two key components: (1) Readability-guided Paraphrase Selection (RPS), a method for mining high-quality sentence pairs, and (2) Idiom-aware Simplification (IAS), a model that enhances the comprehension and simplification of idiomatic expressions. By integrating RPS and IAS using multi-stage and multi-task learning strategies, RISS outperforms previous state-of-the-art methods on two Chinese sentence simplification datasets. Furthermore, RISS achieves additional improvements when fine-tuned on a small labeled dataset. Our approach demonstrates the potential for more effective and accessible Chinese text simplification.
Abstract:Item difficulty plays a crucial role in adaptive testing. However, few works have focused on generating questions of varying difficulty levels, especially for multiple-choice (MC) cloze tests. We propose training pre-trained language models (PLMs) as surrogate models to enable item response theory (IRT) assessment, avoiding the need for human test subjects. We also propose two strategies to control the difficulty levels of both the gaps and the distractors using ranking rules to reduce invalid distractors. Experimentation on a benchmark dataset demonstrates that our proposed framework and methods can effectively control and evaluate the difficulty levels of MC cloze tests.