Abstract:Item difficulty plays a crucial role in adaptive testing. However, few works have focused on generating questions of varying difficulty levels, especially for multiple-choice (MC) cloze tests. We propose training pre-trained language models (PLMs) as surrogate models to enable item response theory (IRT) assessment, avoiding the need for human test subjects. We also propose two strategies to control the difficulty levels of both the gaps and the distractors using ranking rules to reduce invalid distractors. Experimentation on a benchmark dataset demonstrates that our proposed framework and methods can effectively control and evaluate the difficulty levels of MC cloze tests.
Abstract:In the prompt-specific holistic score prediction task for Automatic Essay Scoring, the general approaches include pre-trained neural model, coherence model, and hybrid model that incorporate syntactic features with neural model. In this paper, we propose a novel approach to extract and represent essay coherence features with prompt-learning NSP that shows to match the state-of-the-art AES coherence model, and achieves the best performance for long essays. We apply syntactic feature dense embedding to augment BERT-based model and achieve the best performance for hybrid methodology for AES. In addition, we explore various ideas to combine coherence, syntactic information and semantic embeddings, which no previous study has done before. Our combined model also performs better than the SOTA available for combined model, even though it does not outperform our syntactic enhanced neural model. We further offer analyses that can be useful for future study.