Abstract:Generating human motion from textual descriptions is a challenging task. Existing methods either struggle with physical credibility or are limited by the complexities of physics simulations. In this paper, we present \emph{ReinDiffuse} that combines reinforcement learning with motion diffusion model to generate physically credible human motions that align with textual descriptions. Our method adapts Motion Diffusion Model to output a parameterized distribution of actions, making them compatible with reinforcement learning paradigms. We employ reinforcement learning with the objective of maximizing physically plausible rewards to optimize motion generation for physical fidelity. Our approach outperforms existing state-of-the-art models on two major datasets, HumanML3D and KIT-ML, achieving significant improvements in physical plausibility and motion quality. Project: \url{https://reindiffuse.github.io/}
Abstract:Parameter-efficient transfer learning (PETL) aims to adapt large pre-trained models using limited parameters. While most PETL approaches update the added parameters and freeze pre-trained weights during training, the minimal impact of task-specific deep layers on cross-domain data poses a challenge as PETL cannot modify them, resulting in redundant model structures. Structural pruning effectively reduces model redundancy; however, common pruning methods often lead to an excessive increase in stored parameters due to varying pruning structures based on pruning rates and data. Recognizing the storage parameter volume issue, we propose a Straightforward layer-wise pruning method, called SLS, for pruning PETL-transferred models. By evaluating parameters from a feature perspective of each layer and utilizing clustering metrics to assess current parameters based on clustering phenomena in low-dimensional space obtained through t-SNE, SLS facilitates informed pruning decisions. Our study reveals that layer-wise pruning, with a focus on storing pruning indices, addresses storage volume concerns. Notably, mainstream Layer-wise pruning methods may not be suitable for assessing layer importance in PETL-transferred models, where the majority of parameters are pre-trained and have limited relevance to downstream datasets. Comparative analysis against state-of-the-art PETL methods demonstrates that the pruned model achieved a notable balance between model throughput and accuracy. Moreover, SLS effectively reduces storage overhead arising from varying pruned structures while enhancing the accuracy and speed of pruned models compared to conventional pruning methods.
Abstract:We introduce HuTuMotion, an innovative approach for generating natural human motions that navigates latent motion diffusion models by leveraging few-shot human feedback. Unlike existing approaches that sample latent variables from a standard normal prior distribution, our method adapts the prior distribution to better suit the characteristics of the data, as indicated by human feedback, thus enhancing the quality of motion generation. Furthermore, our findings reveal that utilizing few-shot feedback can yield performance levels on par with those attained through extensive human feedback. This discovery emphasizes the potential and efficiency of incorporating few-shot human-guided optimization within latent diffusion models for personalized and style-aware human motion generation applications. The experimental results show the significantly superior performance of our method over existing state-of-the-art approaches.