Abstract:The electrocardiogram (ECG) is a fundamental tool in cardiovascular diagnostics due to its powerful and non-invasive nature. One of the most critical usages is to determine whether more detailed examinations are necessary, with users ranging across various levels of expertise. Given this diversity in expertise, it is essential to assist users to avoid critical errors. Recent studies in machine learning have addressed this challenge by extracting valuable information from ECG data. Utilizing language models, these studies have implemented multimodal models aimed at classifying ECGs according to labeled terms. However, the number of classes was reduced, and it remains uncertain whether the technique is effective for languages other than English. To move towards practical application, we utilized ECG data from regular patients visiting hospitals in Japan, maintaining a large number of Japanese labels obtained from actual ECG readings. Using a contrastive learning framework, we found that even with 98 labels for classification, our Japanese-based language model achieves accuracy comparable to previous research. This study extends the applicability of multimodal machine learning frameworks to broader clinical studies and non-English languages.
Abstract:The effects of noise on memory in a linear recurrent network are theoretically investigated. Memory is characterized by its ability to store previous inputs in its instantaneous state of network, which receives a correlated or uncorrelated noise. Two major properties are revealed: First, the memory reduced by noise is uniquely determined by the noise's power spectral density (PSD). Second, the memory will not decrease regardless of noise intensity if the PSD is in a certain class of distribution (including power law). The results are verified using the human brain signals, showing good agreement.