Abstract:Continual Test-Time Adaptation (CTTA) aims to adapt a pretrained model to ever-changing environments during the test time under continuous domain shifts. Most existing CTTA approaches are based on the Mean Teacher (MT) structure, which contains a student and a teacher model, where the student is updated using the pseudo-labels from the teacher model, and the teacher is then updated by exponential moving average strategy. However, these methods update the MT model indiscriminately on all parameters of the model. That is, some critical parameters involving sharing knowledge across different domains may be erased, intensifying error accumulation and catastrophic forgetting. In this paper, we introduce Parameter-Selective Mean Teacher (PSMT) method, which is capable of effectively updating the critical parameters within the MT network under domain shifts. First, we introduce a selective distillation mechanism in the student model, which utilizes past knowledge to regularize novel knowledge, thereby mitigating the impact of error accumulation. Second, to avoid catastrophic forgetting, in the teacher model, we create a mask through Fisher information to selectively update parameters via exponential moving average, with preservation measures applied to crucial parameters. Extensive experimental results verify that PSMT outperforms state-of-the-art methods across multiple benchmark datasets. Our code is available at \url{https://github.com/JiaxuTian/PSMT}.
Abstract:Reachability analysis is a promising technique to automatically prove or disprove the reliability and safety of AI-empowered software systems that are developed by using Deep Reinforcement Learning (DRL). Existing approaches suffer however from limited scalability and large overestimation as they must over-approximate the complex and almost inexplicable system components, namely deep neural networks (DNNs). In this paper we propose a novel, tight and scalable reachability analysis approach for DRL systems. By training on abstract states, our approach treats the embedded DNNs as black boxes to avoid the over-approximation for neural networks in computing reachable sets. To tackle the state explosion problem inherent to abstraction-based approaches, we devise a novel adjacent interval aggregation algorithm which balances the growth of abstract states and the overestimation caused by the abstraction. We implement a tool, called BBReach, and assess it on an extensive benchmark of control systems to demonstrate its tightness, scalability, and efficiency.