Abstract:Reward models (RMs) are essential for aligning large language models (LLMs) with human preferences to improve interaction quality. However, the real world is pluralistic, which leads to diversified human preferences with respect to different religions, politics, cultures, etc. Moreover, each individual can have their unique preferences on various topics. Neglecting the diversity of human preferences, current human feedback aligning methods only consider a general reward model, which is below satisfaction for customized or personalized application scenarios. To explore customized preference learning, we collect a domain-specific preference (DSP) dataset, which includes preferred responses for each given query from four practical domains. Besides, from the perspective of data efficiency, we propose a three-stage customized RM learning scheme, then empirically verify its effectiveness on both general preference datasets and our DSP set. Furthermore, we test multiple training and data strategies on the three learning stages. We find several ways to better preserve the general preferring ability while training the customized RMs, especially general preference enrichment, and customized preference imitation learning. The DSP dataset and code are available at https://github.com/Linear95/DSP.
Abstract:Although dominant in natural language processing, transformer-based models remain challenged by the task of long-sequence processing, because the computational cost of self-attention operations in transformers swells quadratically with the input sequence length. To alleviate the complexity of long-sequence processing, we propose a simple framework to enable the offthe-shelf pre-trained transformers to process much longer sequences, while the computation and memory costs remain growing linearly with the input sequence lengths. More specifically, our method divides each long-sequence input into a batch of chunks, then aligns the interchunk information during the encoding steps, and finally selects the most representative hidden states from the encoder for the decoding process. To extract inter-chunk semantic information, we align the start and end token embeddings among chunks in each encoding transformer block. To learn an effective hidden selection policy, we design a dual updating scheme inspired by reinforcement learning, which regards the decoders of transformers as environments, and the downstream performance metrics as the rewards to evaluate the hidden selection actions. Our empirical results on real-world long-text summarization and reading comprehension tasks demonstrate effective improvements compared to prior longsequence processing baselines.
Abstract:The automatic lung lobe segmentation algorithm is of great significance for the diagnosis and treatment of lung diseases, however, which has great challenges due to the incompleteness of pulmonary fissures in lung CT images and the large variability of pathological features. Therefore, we propose a new automatic lung lobe segmentation framework, in which we urge the model to pay attention to the area around the pulmonary fissure during the training process, which is realized by a task-specific loss function. In addition, we introduce an end-to-end pulmonary fissure generation method in the auxiliary pulmonary fissure segmentation task, without any additional network branch. Finally, we propose a registration-based loss function to alleviate the convergence difficulty of the Dice loss supervised pulmonary fissure segmentation task. We achieve 97.83% and 94.75% dice scores on our private dataset STLB and public LUNA16 dataset respectively.