Abstract:Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy (IGRT) to provide updated patient anatomy information for cancer treatments. However, CBCT images often suffer from streaking artifacts and noise caused by under-rate sampling projections and low-dose exposure, resulting in low clarity and information loss. While recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts, they have limited performance on preserving anatomical details since conventional pixel-to-pixel loss functions are incapable of describing detailed anatomy. To address this issue, we propose a novel feature-oriented deep learning framework that translates low-quality CBCT images into high-quality CT-like imaging via a multi-task customized feature-to-feature perceptual loss function. The framework comprises two main components: a multi-task learning feature-selection network(MTFS-Net) for customizing the perceptual loss function; and a CBCT-to-CT translation network guided by feature-to-feature perceptual loss, which uses advanced generative models such as U-Net, GAN and CycleGAN. Our experiments showed that the proposed framework can generate synthesized CT (sCT) images for the lung that achieved a high similarity to CT images, with an average SSIM index of 0.9869 and an average PSNR index of 39.9621. The sCT images also achieved visually pleasing performance with effective artifacts suppression, noise reduction, and distinctive anatomical details preservation. Our experiment results indicate that the proposed framework outperforms the state-of-the-art models for pulmonary CBCT enhancement. This framework holds great promise for generating high-quality anatomical imaging from CBCT that is suitable for various clinical applications.
Abstract:Automatic radiology report generation is essential for computer-aided diagnosis and medication guidance. Importantly, automatic radiology report generation (RRG) can relieve the heavy burden of radiologists by generating medical reports automatically from visual-linguistic data relations. However, due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports that reliably describe abnormalities. Besides, the cross-modal confounder is usually unobservable and difficult to be eliminated explicitly. In this paper, we mitigate the cross-modal data bias for RRG from a new perspective, i.e., visual-linguistic causal intervention, and propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for RRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM), to implicitly deconfound the visual-linguistic confounder by causal front-door intervention. Specifically, the VDM explores and disentangles the visual confounder from the patch-based local and global features without object detection due to the absence of universal clinic semantic extraction. Simultaneously, the LDM eliminates the linguistic confounder caused by salient visual features and high-frequency context without constructing specific dictionaries. Extensive experiments on IU-Xray and MIMIC-CXR datasets show that our VLCI outperforms the state-of-the-art RRG methods significantly. Source code and models are available at https://github.com/WissingChen/VLCI.