Abstract:Source-free domain adaptation (SFDA) tackles the critical challenge of adapting source-pretrained models to unlabeled target domains without access to source data, overcoming data privacy and storage limitations in real-world applications. However, existing SFDA approaches struggle with the trade-off between perception field and computational efficiency in domain-invariant feature learning. Recently, Mamba has offered a promising solution through its selective scan mechanism, which enables long-range dependency modeling with linear complexity. However, the Visual Mamba (i.e., VMamba) remains limited in capturing channel-wise frequency characteristics critical for domain alignment and maintaining spatial robustness under significant domain shifts. To address these, we propose a framework called SfMamba to fully explore the stable dependency in source-free model transfer. SfMamba introduces Channel-wise Visual State-Space block that enables channel-sequence scanning for domain-invariant feature extraction. In addition, SfMamba involves a Semantic-Consistent Shuffle strategy that disrupts background patch sequences in 2D selective scan while preserving prediction consistency to mitigate error accumulation. Comprehensive evaluations across multiple benchmarks show that SfMamba achieves consistently stronger performance than existing methods while maintaining favorable parameter efficiency, offering a practical solution for SFDA. Our code is available at https://github.com/chenxi52/SfMamba.




Abstract:Visual emotion recognition (VER), which aims at understanding humans' emotional reactions toward different visual stimuli, has attracted increasing attention. Given the subjective and ambiguous characteristics of emotion, annotating a reliable large-scale dataset is hard. For reducing reliance on data labeling, domain adaptation offers an alternative solution by adapting models trained on labeled source data to unlabeled target data. Conventional domain adaptation methods require access to source data. However, due to privacy concerns, source emotional data may be inaccessible. To address this issue, we propose an unexplored task: source-free domain adaptation (SFDA) for VER, which does not have access to source data during the adaptation process. To achieve this, we propose a novel framework termed Bridge then Begin Anew (BBA), which consists of two steps: domain-bridged model generation (DMG) and target-related model adaptation (TMA). First, the DMG bridges cross-domain gaps by generating an intermediate model, avoiding direct alignment between two VER datasets with significant differences. Then, the TMA begins training the target model anew to fit the target structure, avoiding the influence of source-specific knowledge. Extensive experiments are conducted on six SFDA settings for VER. The results demonstrate the effectiveness of BBA, which achieves remarkable performance gains compared with state-of-the-art SFDA methods and outperforms representative unsupervised domain adaptation approaches.




Abstract:Panoramic semantic segmentation has received widespread attention recently due to its comprehensive 360\degree field of view. However, labeling such images demands greater resources compared to pinhole images. As a result, many unsupervised domain adaptation methods for panoramic semantic segmentation have emerged, utilizing real pinhole images or low-cost synthetic panoramic images. But, the segmentation model lacks understanding of the panoramic structure when only utilizing real pinhole images, and it lacks perception of real-world scenes when only adopting synthetic panoramic images. Therefore, in this paper, we propose a new task of multi-source domain adaptation for panoramic semantic segmentation, aiming to utilize both real pinhole and synthetic panoramic images in the source domains, enabling the segmentation model to perform well on unlabeled real panoramic images in the target domain. Further, we propose Deformation Transform Aligner for Panoramic Semantic Segmentation (DTA4PASS), which converts all pinhole images in the source domains into panoramic-like images, and then aligns the converted source domains with the target domain. Specifically, DTA4PASS consists of two main components: Unpaired Semantic Morphing (USM) and Distortion Gating Alignment (DGA). Firstly, in USM, the Semantic Dual-view Discriminator (SDD) assists in training the diffeomorphic deformation network, enabling the effective transformation of pinhole images without paired panoramic views. Secondly, DGA assigns pinhole-like and panoramic-like features to each image by gating, and aligns these two features through uncertainty estimation. DTA4PASS outperforms the previous state-of-the-art methods by 1.92% and 2.19% on the outdoor and indoor multi-source domain adaptation scenarios, respectively. The source code will be released.