Abstract:Multicopter swarms with decentralized structure possess the nature of flexibility and robustness, while efficient spatial-temporal trajectory planning still remains a challenge. This report introduces decentralized spatial-temporal trajectory planning, which puts a well-formed trajectory representation named MINCO into multi-agent scenarios. Our method ensures high-quality local planning for each agent subject to any constraint from either the coordination of the swarm or safety requirements in cluttered environments. Then, the local trajectory generation is formulated as an unconstrained optimization problem that is efficiently solved in milliseconds. Moreover, a decentralized asynchronous mechanism is designed to trigger the local planning for each agent. A systematic solution is presented with detailed descriptions of careful engineering considerations. Extensive benchmarks and indoor/outdoor experiments validate its wide applicability and high quality. Our software will be released for the reference of the community.
Abstract:This paper presents a decentralized and asynchronous systematic solution for multi-robot autonomous navigation in unknown obstacle-rich scenes using merely onboard resources. The planning system is formulated under gradient-based local planning framework, where collision avoidance is achieved by formulating the collision risk as a penalty of a nonlinear optimization problem. In order to improve robustness and escape local minima, we incorporate a lightweight topological trajectory generation method. Then agents generate safe, smooth, and dynamically feasible trajectories in only several milliseconds using an unreliable trajectory sharing network. Relative localization drift among agents is corrected by using agent detection in depth images. Our method is demonstrated in both simulation and real-world experiments. The source code is released for the reference of the community.