Abstract:Aspect Sentiment Understanding (ASU) in interactive scenarios (e.g., Question-Answering and Dialogue) has attracted ever-more interest in recent years and achieved important progresses. However, existing studies on interactive ASU largely ignore the coreference issue for opinion targets (i.e., aspects), while this phenomenon is ubiquitous in interactive scenarios especially dialogues, limiting the ASU performance. Recently, large language models (LLMs) shows the powerful ability to integrate various NLP tasks with the chat paradigm. In this way, this paper proposes a new Chat-based Aspect Sentiment Understanding (ChatASU) task, aiming to explore LLMs' ability in understanding aspect sentiments in dialogue scenarios. Particularly, this ChatASU task introduces a sub-task, i.e., Aspect Chain Reasoning (ACR) task, to address the aspect coreference issue. On this basis, we propose a Trusted Self-reflexion Approach (TSA) with ChatGLM as backbone to ChatASU. Specifically, this TSA treats the ACR task as an auxiliary task to boost the performance of the primary ASU task, and further integrates trusted learning into reflexion mechanisms to alleviate the LLMs-intrinsic factual hallucination problem in TSA. Furthermore, a high-quality ChatASU dataset is annotated to evaluate TSA, and extensive experiments show that our proposed TSA can significantly outperform several state-of-the-art baselines, justifying the effectiveness of TSA to ChatASU and the importance of considering the coreference and hallucination issues in ChatASU.
Abstract:Multimodal Conversational Emotion (MCE) detection, generally spanning across the acoustic, vision and language modalities, has attracted increasing interest in the multimedia community. Previous studies predominantly focus on learning contextual information in conversations with only a few considering the topic information in single language modality, while always neglecting the acoustic and vision topic information. On this basis, we propose a model-agnostic Topic-enriched Diffusion (TopicDiff) approach for capturing multimodal topic information in MCE tasks. Particularly, we integrate the diffusion model into neural topic model to alleviate the diversity deficiency problem of neural topic model in capturing topic information. Detailed evaluations demonstrate the significant improvements of TopicDiff over the state-of-the-art MCE baselines, justifying the importance of multimodal topic information to MCE and the effectiveness of TopicDiff in capturing such information. Furthermore, we observe an interesting finding that the topic information in acoustic and vision is more discriminative and robust compared to the language.
Abstract:Weakly-supervised Phrase Grounding (WPG) is an emerging task of inferring the fine-grained phrase-region matching, while merely leveraging the coarse-grained sentence-image pairs for training. However, existing studies on WPG largely ignore the implicit phrase-region matching relations, which are crucial for evaluating the capability of models in understanding the deep multimodal semantics. To this end, this paper proposes an Implicit-Enhanced Causal Inference (IECI) approach to address the challenges of modeling the implicit relations and highlighting them beyond the explicit. Specifically, this approach leverages both the intervention and counterfactual techniques to tackle the above two challenges respectively. Furthermore, a high-quality implicit-enhanced dataset is annotated to evaluate IECI and detailed evaluations show the great advantages of IECI over the state-of-the-art baselines. Particularly, we observe an interesting finding that IECI outperforms the advanced multimodal LLMs by a large margin on this implicit-enhanced dataset, which may facilitate more research to evaluate the multimodal LLMs in this direction.