Abstract:Process reward models (PRMs) have shown success in complex reasoning tasks for large language models (LLMs). However, their application to machine translation (MT) remains underexplored due to the lack of systematic methodologies and evaluation benchmarks. To address this gap, we introduce \textbf{MT-RewardTree}, a comprehensive framework for constructing, evaluating, and deploying process reward models in MT. Unlike traditional vanilla preference pair construction, we propose a novel method for automatically generating token-level preference pairs using approximate Monte Carlo Tree Search (MCTS), which mitigates the prohibitive cost of human annotation for fine-grained steps. Then, we establish the first MT-specific reward model benchmark and provide a systematic comparison of different reward modeling architectures, revealing that token-level supervision effectively captures fine-grained preferences. Experimental results demonstrate that our MT-PRM-Qwen-2.5-3B achieves state-of-the-art performance in both token-level and sequence-level evaluation given the same input prefix. Furthermore, we showcase practical applications where PRMs enable test-time alignment for LLMs without additional alignment training and significantly improve performance in hypothesis ensembling. Our work provides valuable insights into the role of reward models in MT research. Our code and data are released in \href{https://sabijun.github.io/MT_RewardTreePage/}{https://sabijun.github.io/MT\_RewardTreePage}.
Abstract:Recent advancements in large language models (LLMs) have given rise to the LLM-as-a-judge paradigm, showcasing their potential to deliver human-like judgments. However, in the field of machine translation (MT) evaluation, current LLM-as-a-judge methods fall short of learned automatic metrics. In this paper, we propose Multidimensional Multi-Agent Debate (M-MAD), a systematic LLM-based multi-agent framework for advanced LLM-as-a-judge MT evaluation. Our findings demonstrate that M-MAD achieves significant advancements by (1) decoupling heuristic MQM criteria into distinct evaluation dimensions for fine-grained assessments; (2) employing multi-agent debates to harness the collaborative reasoning capabilities of LLMs; (3) synthesizing dimension-specific results into a final evaluation judgment to ensure robust and reliable outcomes. Comprehensive experiments show that M-MAD not only outperforms all existing LLM-as-a-judge methods but also competes with state-of-the-art reference-based automatic metrics, even when powered by a suboptimal model like GPT-4o mini. Detailed ablations and analysis highlight the superiority of our framework design, offering a fresh perspective for LLM-as-a-judge paradigm. Our code and data are publicly available at https://github.com/SU-JIAYUAN/M-MAD.