Abstract:We introduce TreeMeshGPT, an autoregressive Transformer designed to generate high-quality artistic meshes aligned with input point clouds. Instead of the conventional next-token prediction in autoregressive Transformer, we propose a novel Autoregressive Tree Sequencing where the next input token is retrieved from a dynamically growing tree structure that is built upon the triangle adjacency of faces within the mesh. Our sequencing enables the mesh to extend locally from the last generated triangular face at each step, and therefore reduces training difficulty and improves mesh quality. Our approach represents each triangular face with two tokens, achieving a compression rate of approximately 22% compared to the naive face tokenization. This efficient tokenization enables our model to generate highly detailed artistic meshes with strong point cloud conditioning, surpassing previous methods in both capacity and fidelity. Furthermore, our method generates mesh with strong normal orientation constraints, minimizing flipped normals commonly encountered in previous methods. Our experiments show that TreeMeshGPT enhances the mesh generation quality with refined details and normal orientation consistency.
Abstract:The conventional mesh-based Level of Detail (LoD) technique, exemplified by applications such as Google Earth and many game engines, exhibits the capability to holistically represent a large scene even the Earth, and achieves rendering with a space complexity of O(log n). This constrained data requirement not only enhances rendering efficiency but also facilitates dynamic data fetching, thereby enabling a seamless 3D navigation experience for users. In this work, we extend this proven LoD technique to Neural Radiance Fields (NeRF) by introducing an octree structure to represent the scenes in different scales. This innovative approach provides a mathematically simple and elegant representation with a rendering space complexity of O(log n), aligned with the efficiency of mesh-based LoD techniques. We also present a novel training strategy that maintains a complexity of O(n). This strategy allows for parallel training with minimal overhead, ensuring the scalability and efficiency of our proposed method. Our contribution is not only in extending the capabilities of existing techniques but also in establishing a foundation for scalable and efficient large-scale scene representation using NeRF and octree structures.
Abstract:Garment sewing pattern represents the intrinsic rest shape of a garment, and is the core for many applications like fashion design, virtual try-on, and digital avatars. In this work, we explore the challenging problem of recovering garment sewing patterns from daily photos for augmenting these applications. To solve the problem, we first synthesize a versatile dataset, named SewFactory, which consists of around 1M images and ground-truth sewing patterns for model training and quantitative evaluation. SewFactory covers a wide range of human poses, body shapes, and sewing patterns, and possesses realistic appearances thanks to the proposed human texture synthesis network. Then, we propose a two-level Transformer network called Sewformer, which significantly improves the sewing pattern prediction performance. Extensive experiments demonstrate that the proposed framework is effective in recovering sewing patterns and well generalizes to casually-taken human photos. Code, dataset, and pre-trained models are available at: https://sewformer.github.io.