Abstract:Designing physical artifacts that serve a purpose - such as tools and other functional structures - is central to engineering as well as everyday human behavior. Though automating design has tremendous promise, general-purpose methods do not yet exist. Here we explore a simple, fast, and robust approach to inverse design which combines learned forward simulators based on graph neural networks with gradient-based design optimization. Our approach solves high-dimensional problems with complex physical dynamics, including designing surfaces and tools to manipulate fluid flows and optimizing the shape of an airfoil to minimize drag. This framework produces high-quality designs by propagating gradients through trajectories of hundreds of steps, even when using models that were pre-trained for single-step predictions on data substantially different from the design tasks. In our fluid manipulation tasks, the resulting designs outperformed those found by sampling-based optimization techniques. In airfoil design, they matched the quality of those obtained with a specialized solver. Our results suggest that despite some remaining challenges, machine learning-based simulators are maturing to the point where they can support general-purpose design optimization across a variety of domains.
Abstract:Machine learning is currently involved in some of the most vigorous debates it has ever seen. Such debates often seem to go around in circles, reaching no conclusion or resolution. This is perhaps unsurprising given that researchers in machine learning come to these discussions with very different frames of reference, making it challenging for them to align perspectives and find common ground. As a remedy for this dilemma, we advocate for the adoption of a common conceptual framework which can be used to understand, analyze, and discuss research. We present one such framework which is popular in cognitive science and neuroscience and which we believe has great utility in machine learning as well: Marr's levels of analysis. Through a series of case studies, we demonstrate how the levels facilitate an understanding and dissection of several methods from machine learning. By adopting the levels of analysis in one's own work, we argue that researchers can be better equipped to engage in the debates necessary to drive forward progress in our field.