Abstract:Clinical trial matching is the task of identifying trials for which patients may be potentially eligible. Typically, this task is labor-intensive and requires detailed verification of patient electronic health records (EHRs) against the stringent inclusion and exclusion criteria of clinical trials. This process is manual, time-intensive, and challenging to scale up, resulting in many patients missing out on potential therapeutic options. Recent advancements in Large Language Models (LLMs) have made automating patient-trial matching possible, as shown in multiple concurrent research studies. However, the current approaches are confined to constrained, often synthetic datasets that do not adequately mirror the complexities encountered in real-world medical data. In this study, we present the first, end-to-end large-scale empirical evaluation of clinical trial matching using real-world EHRs. Our study showcases the capability of LLMs to accurately match patients with appropriate clinical trials. We perform experiments with proprietary LLMs, including GPT-4 and GPT-3.5, as well as our custom fine-tuned model called OncoLLM and show that OncoLLM, despite its significantly smaller size, not only outperforms GPT-3.5 but also matches the performance of qualified medical doctors. All experiments were carried out on real-world EHRs that include clinical notes and available clinical trials from a single cancer center in the United States.
Abstract:Clause recommendation is the problem of recommending a clause to a legal contract, given the context of the contract in question and the clause type to which the clause should belong. With not much prior work being done toward the generation of legal contracts, this problem was proposed as a first step toward the bigger problem of contract generation. As an open-ended text generation problem, the distinguishing characteristics of this problem lie in the nature of legal language as a sublanguage and the considerable similarity of textual content within the clauses of a specific type. This similarity aspect in legal clauses drives us to investigate the importance of similar contracts' representation for recommending clauses. In our work, we experiment with generating clauses for 15 commonly occurring clause types in contracts expanding upon the previous work on this problem and analyzing clause recommendations in varying settings using information derived from similar contracts.