Abstract:Using Large Language Models (LLMs) to address critical societal problems requires adopting this novel technology into socio-technical systems. However, the complexity of such systems and the nature of LLMs challenge such a vision. It is unlikely that the solution to such challenges will come from the Artificial Intelligence (AI) community itself. Instead, the Systems Engineering approach is better equipped to facilitate the adoption of LLMs by prioritising the problems and their context before any other aspects. This paper introduces the challenges LLMs generate and surveys systems research efforts for engineering AI-based systems. We reveal how the systems engineering principles have supported addressing similar issues to the ones LLMs pose and discuss our findings to provide future directions for adopting LLMs.
Abstract:We suggest a multilevel model, to represent aggregate train-passing events from the Staffordshire bridge monitoring system. We formulate a combined model from simple units, representing strain envelopes (of each train passing) for two types of commuter train. The measurements are treated as a longitudinal dataset and represented with a (low-rank approximation) hierarchical Gaussian process. For each unit in the combined model, we encode domain expertise as boundary condition constraints and work towards a general representation of the strain response. Looking forward, this should allow for the simulation of train types that were previously unobserved in the training data. For example, trains with more passengers or freights with a heavier payload. The strain event simulations are valuable since they can inform further experiments (including FEM calibration, fatigue analysis, or design) to test the bridge in hypothesised scenarios.