Abstract:Memory and computation efficient deep learning architec- tures are crucial to continued proliferation of machine learning capabili- ties to new platforms and systems. Binarization of operations in convo- lutional neural networks has shown promising results in reducing model size and computing efficiency. In this paper, we tackle the problem us- ing a strategy different from the existing literature by proposing local binary pattern networks or LBPNet, that is able to learn and perform binary operations in an end-to-end fashion. LBPNet1 uses local binary comparisons and random projection in place of conventional convolu- tion (or approximation of convolution) operations. These operations can be implemented efficiently on different platforms including direct hard- ware implementation. We applied LBPNet and its variants on standard benchmarks. The results are promising across benchmarks while provid- ing an important means to improve memory and speed efficiency that is particularly suited for small footprint devices and hardware accelerators.
Abstract:State-of-the-art convolutional neural networks are enormously costly in both compute and memory, demanding massively parallel GPUs for execution. Such networks strain the computational capabilities and energy available to embedded and mobile processing platforms, restricting their use in many important applications. In this paper, we push the boundaries of hardware-effective CNN design by proposing BCNN with Separable Filters (BCNNw/SF), which applies Singular Value Decomposition (SVD) on BCNN kernels to further reduce computational and storage complexity. To enable its implementation, we provide a closed form of the gradient over SVD to calculate the exact gradient with respect to every binarized weight in backward propagation. We verify BCNNw/SF on the MNIST, CIFAR-10, and SVHN datasets, and implement an accelerator for CIFAR-10 on FPGA hardware. Our BCNNw/SF accelerator realizes memory savings of 17% and execution time reduction of 31.3% compared to BCNN with only minor accuracy sacrifices.