Abstract:While expressive speech synthesis or voice conversion systems mainly focus on controlling or manipulating abstract prosodic characteristics of speech, such as emotion or accent, we here address the control of perceptual voice qualities (PVQs) recognized by phonetic experts, which are speech properties at a lower level of abstraction. The ability to manipulate PVQs can be a valuable tool for teaching speech pathologists in training or voice actors. In this paper, we integrate a Conditional Continuous-Normalizing-Flow-based method into a Text-to-Speech system to modify perceptual voice attributes on a continuous scale. Unlike previous approaches, our system avoids direct manipulation of acoustic correlates and instead learns from examples. We demonstrate the system's capability by manipulating four voice qualities: Roughness, breathiness, resonance and weight. Phonetic experts evaluated these modifications, both for seen and unseen speaker conditions. The results highlight both the system's strengths and areas for improvement.
Abstract:Unsupervised speech disentanglement aims at separating fast varying from slowly varying components of a speech signal. In this contribution, we take a closer look at the embedding vector representing the slowly varying signal components, commonly named the speaker embedding vector. We ask, which properties of a speaker's voice are captured and investigate to which extent do individual embedding vector components sign responsible for them, using the concept of Shapley values. Our findings show that certain speaker-specific acoustic-phonetic properties can be fairly well predicted from the speaker embedding, while the investigated more abstract voice quality features cannot.